221 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> ZGBSV computes the solution to system of linear equations A * X = B for GB matrices</b> (simple driver)
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZGBSV + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbsv.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbsv.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbsv.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX*16         AB( LDAB, * ), B( LDB, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZGBSV computes the solution to a complex system of linear equations
 | 
						|
*> A * X = B, where A is a band matrix of order N with KL subdiagonals
 | 
						|
*> and KU superdiagonals, and X and B are N-by-NRHS matrices.
 | 
						|
*>
 | 
						|
*> The LU decomposition with partial pivoting and row interchanges is
 | 
						|
*> used to factor A as A = L * U, where L is a product of permutation
 | 
						|
*> and unit lower triangular matrices with KL subdiagonals, and U is
 | 
						|
*> upper triangular with KL+KU superdiagonals.  The factored form of A
 | 
						|
*> is then used to solve the system of equations A * X = B.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of linear equations, i.e., the order of the
 | 
						|
*>          matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>          The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>          The number of superdiagonals within the band of A.  KU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is COMPLEX*16 array, dimension (LDAB,N)
 | 
						|
*>          On entry, the matrix A in band storage, in rows KL+1 to
 | 
						|
*>          2*KL+KU+1; rows 1 to KL of the array need not be set.
 | 
						|
*>          The j-th column of A is stored in the j-th column of the
 | 
						|
*>          array AB as follows:
 | 
						|
*>          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
 | 
						|
*>          On exit, details of the factorization: U is stored as an
 | 
						|
*>          upper triangular band matrix with KL+KU superdiagonals in
 | 
						|
*>          rows 1 to KL+KU+1, and the multipliers used during the
 | 
						|
*>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
 | 
						|
*>          See below for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices that define the permutation matrix P;
 | 
						|
*>          row i of the matrix was interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | 
						|
*>          On entry, the N-by-NRHS right hand side matrix B.
 | 
						|
*>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
 | 
						|
*>                has been completed, but the factor U is exactly
 | 
						|
*>                singular, and the solution has not been computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complex16GBsolve
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The band storage scheme is illustrated by the following example, when
 | 
						|
*>  M = N = 6, KL = 2, KU = 1:
 | 
						|
*>
 | 
						|
*>  On entry:                       On exit:
 | 
						|
*>
 | 
						|
*>      *    *    *    +    +    +       *    *    *   u14  u25  u36
 | 
						|
*>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
 | 
						|
*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | 
						|
*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | 
						|
*>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
 | 
						|
*>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
 | 
						|
*>
 | 
						|
*>  Array elements marked * are not used by the routine; elements marked
 | 
						|
*>  + need not be set on entry, but are required by the routine to store
 | 
						|
*>  elements of U because of fill-in resulting from the row interchanges.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX*16         AB( LDAB, * ), B( LDB, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGBTRF, ZGBTRS
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( N.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( KL.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KU.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGBSV ', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the LU factorization of the band matrix A.
 | 
						|
*
 | 
						|
      CALL ZGBTRF( N, N, KL, KU, AB, LDAB, IPIV, INFO )
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Solve the system A*X = B, overwriting B with X.
 | 
						|
*
 | 
						|
         CALL ZGBTRS( 'No transpose', N, KL, KU, NRHS, AB, LDAB, IPIV,
 | 
						|
     $                B, LDB, INFO )
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGBSV
 | 
						|
*
 | 
						|
      END
 |