434 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			434 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLASR applies a sequence of plane rotations to a general rectangular matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SLASR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIRECT, PIVOT, SIDE
 | 
						|
*       INTEGER            LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), C( * ), S( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLASR applies a sequence of plane rotations to a real matrix A,
 | 
						|
*> from either the left or the right.
 | 
						|
*>
 | 
						|
*> When SIDE = 'L', the transformation takes the form
 | 
						|
*>
 | 
						|
*>    A := P*A
 | 
						|
*>
 | 
						|
*> and when SIDE = 'R', the transformation takes the form
 | 
						|
*>
 | 
						|
*>    A := A*P**T
 | 
						|
*>
 | 
						|
*> where P is an orthogonal matrix consisting of a sequence of z plane
 | 
						|
*> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
 | 
						|
*> and P**T is the transpose of P.
 | 
						|
*>
 | 
						|
*> When DIRECT = 'F' (Forward sequence), then
 | 
						|
*>
 | 
						|
*>    P = P(z-1) * ... * P(2) * P(1)
 | 
						|
*>
 | 
						|
*> and when DIRECT = 'B' (Backward sequence), then
 | 
						|
*>
 | 
						|
*>    P = P(1) * P(2) * ... * P(z-1)
 | 
						|
*>
 | 
						|
*> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
 | 
						|
*>
 | 
						|
*>    R(k) = (  c(k)  s(k) )
 | 
						|
*>         = ( -s(k)  c(k) ).
 | 
						|
*>
 | 
						|
*> When PIVOT = 'V' (Variable pivot), the rotation is performed
 | 
						|
*> for the plane (k,k+1), i.e., P(k) has the form
 | 
						|
*>
 | 
						|
*>    P(k) = (  1                                            )
 | 
						|
*>           (       ...                                     )
 | 
						|
*>           (              1                                )
 | 
						|
*>           (                   c(k)  s(k)                  )
 | 
						|
*>           (                  -s(k)  c(k)                  )
 | 
						|
*>           (                                1              )
 | 
						|
*>           (                                     ...       )
 | 
						|
*>           (                                            1  )
 | 
						|
*>
 | 
						|
*> where R(k) appears as a rank-2 modification to the identity matrix in
 | 
						|
*> rows and columns k and k+1.
 | 
						|
*>
 | 
						|
*> When PIVOT = 'T' (Top pivot), the rotation is performed for the
 | 
						|
*> plane (1,k+1), so P(k) has the form
 | 
						|
*>
 | 
						|
*>    P(k) = (  c(k)                    s(k)                 )
 | 
						|
*>           (         1                                     )
 | 
						|
*>           (              ...                              )
 | 
						|
*>           (                     1                         )
 | 
						|
*>           ( -s(k)                    c(k)                 )
 | 
						|
*>           (                                 1             )
 | 
						|
*>           (                                      ...      )
 | 
						|
*>           (                                             1 )
 | 
						|
*>
 | 
						|
*> where R(k) appears in rows and columns 1 and k+1.
 | 
						|
*>
 | 
						|
*> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
 | 
						|
*> performed for the plane (k,z), giving P(k) the form
 | 
						|
*>
 | 
						|
*>    P(k) = ( 1                                             )
 | 
						|
*>           (      ...                                      )
 | 
						|
*>           (             1                                 )
 | 
						|
*>           (                  c(k)                    s(k) )
 | 
						|
*>           (                         1                     )
 | 
						|
*>           (                              ...              )
 | 
						|
*>           (                                     1         )
 | 
						|
*>           (                 -s(k)                    c(k) )
 | 
						|
*>
 | 
						|
*> where R(k) appears in rows and columns k and z.  The rotations are
 | 
						|
*> performed without ever forming P(k) explicitly.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          Specifies whether the plane rotation matrix P is applied to
 | 
						|
*>          A on the left or the right.
 | 
						|
*>          = 'L':  Left, compute A := P*A
 | 
						|
*>          = 'R':  Right, compute A:= A*P**T
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PIVOT
 | 
						|
*> \verbatim
 | 
						|
*>          PIVOT is CHARACTER*1
 | 
						|
*>          Specifies the plane for which P(k) is a plane rotation
 | 
						|
*>          matrix.
 | 
						|
*>          = 'V':  Variable pivot, the plane (k,k+1)
 | 
						|
*>          = 'T':  Top pivot, the plane (1,k+1)
 | 
						|
*>          = 'B':  Bottom pivot, the plane (k,z)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIRECT
 | 
						|
*> \verbatim
 | 
						|
*>          DIRECT is CHARACTER*1
 | 
						|
*>          Specifies whether P is a forward or backward sequence of
 | 
						|
*>          plane rotations.
 | 
						|
*>          = 'F':  Forward, P = P(z-1)*...*P(2)*P(1)
 | 
						|
*>          = 'B':  Backward, P = P(1)*P(2)*...*P(z-1)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  If m <= 1, an immediate
 | 
						|
*>          return is effected.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  If n <= 1, an
 | 
						|
*>          immediate return is effected.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension
 | 
						|
*>                  (M-1) if SIDE = 'L'
 | 
						|
*>                  (N-1) if SIDE = 'R'
 | 
						|
*>          The cosines c(k) of the plane rotations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is REAL array, dimension
 | 
						|
*>                  (M-1) if SIDE = 'L'
 | 
						|
*>                  (N-1) if SIDE = 'R'
 | 
						|
*>          The sines s(k) of the plane rotations.  The 2-by-2 plane
 | 
						|
*>          rotation part of the matrix P(k), R(k), has the form
 | 
						|
*>          R(k) = (  c(k)  s(k) )
 | 
						|
*>                 ( -s(k)  c(k) ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The M-by-N matrix A.  On exit, A is overwritten by P*A if
 | 
						|
*>          SIDE = 'R' or by A*P**T if SIDE = 'L'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup OTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIRECT, PIVOT, SIDE
 | 
						|
      INTEGER            LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), C( * ), S( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, INFO, J
 | 
						|
      REAL               CTEMP, STEMP, TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
 | 
						|
     $         'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
 | 
						|
     $          THEN
 | 
						|
         INFO = 3
 | 
						|
      ELSE IF( M.LT.0 ) THEN
 | 
						|
         INFO = 4
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = 5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = 9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SLASR ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
 | 
						|
     $   RETURN
 | 
						|
      IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
*
 | 
						|
*        Form  P * A
 | 
						|
*
 | 
						|
         IF( LSAME( PIVOT, 'V' ) ) THEN
 | 
						|
            IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
               DO 20 J = 1, M - 1
 | 
						|
                  CTEMP = C( J )
 | 
						|
                  STEMP = S( J )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 10 I = 1, N
 | 
						|
                        TEMP = A( J+1, I )
 | 
						|
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
 | 
						|
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
 | 
						|
   10                CONTINUE
 | 
						|
                  END IF
 | 
						|
   20          CONTINUE
 | 
						|
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | 
						|
               DO 40 J = M - 1, 1, -1
 | 
						|
                  CTEMP = C( J )
 | 
						|
                  STEMP = S( J )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 30 I = 1, N
 | 
						|
                        TEMP = A( J+1, I )
 | 
						|
                        A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
 | 
						|
                        A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
 | 
						|
   30                CONTINUE
 | 
						|
                  END IF
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
 | 
						|
            IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
               DO 60 J = 2, M
 | 
						|
                  CTEMP = C( J-1 )
 | 
						|
                  STEMP = S( J-1 )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 50 I = 1, N
 | 
						|
                        TEMP = A( J, I )
 | 
						|
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
 | 
						|
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
 | 
						|
   50                CONTINUE
 | 
						|
                  END IF
 | 
						|
   60          CONTINUE
 | 
						|
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | 
						|
               DO 80 J = M, 2, -1
 | 
						|
                  CTEMP = C( J-1 )
 | 
						|
                  STEMP = S( J-1 )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 70 I = 1, N
 | 
						|
                        TEMP = A( J, I )
 | 
						|
                        A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
 | 
						|
                        A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
 | 
						|
   70                CONTINUE
 | 
						|
                  END IF
 | 
						|
   80          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
 | 
						|
            IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
               DO 100 J = 1, M - 1
 | 
						|
                  CTEMP = C( J )
 | 
						|
                  STEMP = S( J )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 90 I = 1, N
 | 
						|
                        TEMP = A( J, I )
 | 
						|
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
 | 
						|
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
 | 
						|
   90                CONTINUE
 | 
						|
                  END IF
 | 
						|
  100          CONTINUE
 | 
						|
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | 
						|
               DO 120 J = M - 1, 1, -1
 | 
						|
                  CTEMP = C( J )
 | 
						|
                  STEMP = S( J )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 110 I = 1, N
 | 
						|
                        TEMP = A( J, I )
 | 
						|
                        A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
 | 
						|
                        A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
 | 
						|
  110                CONTINUE
 | 
						|
                  END IF
 | 
						|
  120          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | 
						|
*
 | 
						|
*        Form A * P**T
 | 
						|
*
 | 
						|
         IF( LSAME( PIVOT, 'V' ) ) THEN
 | 
						|
            IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
               DO 140 J = 1, N - 1
 | 
						|
                  CTEMP = C( J )
 | 
						|
                  STEMP = S( J )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 130 I = 1, M
 | 
						|
                        TEMP = A( I, J+1 )
 | 
						|
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
 | 
						|
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
 | 
						|
  130                CONTINUE
 | 
						|
                  END IF
 | 
						|
  140          CONTINUE
 | 
						|
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | 
						|
               DO 160 J = N - 1, 1, -1
 | 
						|
                  CTEMP = C( J )
 | 
						|
                  STEMP = S( J )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 150 I = 1, M
 | 
						|
                        TEMP = A( I, J+1 )
 | 
						|
                        A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
 | 
						|
                        A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
 | 
						|
  150                CONTINUE
 | 
						|
                  END IF
 | 
						|
  160          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
 | 
						|
            IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
               DO 180 J = 2, N
 | 
						|
                  CTEMP = C( J-1 )
 | 
						|
                  STEMP = S( J-1 )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 170 I = 1, M
 | 
						|
                        TEMP = A( I, J )
 | 
						|
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
 | 
						|
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
 | 
						|
  170                CONTINUE
 | 
						|
                  END IF
 | 
						|
  180          CONTINUE
 | 
						|
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | 
						|
               DO 200 J = N, 2, -1
 | 
						|
                  CTEMP = C( J-1 )
 | 
						|
                  STEMP = S( J-1 )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 190 I = 1, M
 | 
						|
                        TEMP = A( I, J )
 | 
						|
                        A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
 | 
						|
                        A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
 | 
						|
  190                CONTINUE
 | 
						|
                  END IF
 | 
						|
  200          CONTINUE
 | 
						|
            END IF
 | 
						|
         ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
 | 
						|
            IF( LSAME( DIRECT, 'F' ) ) THEN
 | 
						|
               DO 220 J = 1, N - 1
 | 
						|
                  CTEMP = C( J )
 | 
						|
                  STEMP = S( J )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 210 I = 1, M
 | 
						|
                        TEMP = A( I, J )
 | 
						|
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
 | 
						|
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
 | 
						|
  210                CONTINUE
 | 
						|
                  END IF
 | 
						|
  220          CONTINUE
 | 
						|
            ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
 | 
						|
               DO 240 J = N - 1, 1, -1
 | 
						|
                  CTEMP = C( J )
 | 
						|
                  STEMP = S( J )
 | 
						|
                  IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
 | 
						|
                     DO 230 I = 1, M
 | 
						|
                        TEMP = A( I, J )
 | 
						|
                        A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
 | 
						|
                        A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
 | 
						|
  230                CONTINUE
 | 
						|
                  END IF
 | 
						|
  240          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLASR
 | 
						|
*
 | 
						|
      END
 |