OpenBLAS/benchmark/pybench/benchmarks/bench_blas.py

186 lines
3.9 KiB
Python

import pytest
import numpy as np
from openblas_wrap import (
# level 1
dnrm2, ddot, daxpy,
# level 3
dgemm, dsyrk,
# lapack
dgesv, # linalg.solve
dgesdd, dgesdd_lwork, # linalg.svd
dsyev, dsyev_lwork, # linalg.eigh
)
# ### BLAS level 1 ###
# dnrm2
dnrm2_sizes = [100, 1000]
def run_dnrm2(n, x, incx):
res = dnrm2(x, n, incx=incx)
return res
@pytest.mark.parametrize('n', dnrm2_sizes)
def test_nrm2(benchmark, n):
rndm = np.random.RandomState(1234)
x = np.array(rndm.uniform(size=(n,)), dtype=float)
result = benchmark(run_dnrm2, n, x, 1)
# ddot
ddot_sizes = [100, 1000]
def run_ddot(x, y,):
res = ddot(x, y)
return res
@pytest.mark.parametrize('n', ddot_sizes)
def test_dot(benchmark, n):
rndm = np.random.RandomState(1234)
x = np.array(rndm.uniform(size=(n,)), dtype=float)
y = np.array(rndm.uniform(size=(n,)), dtype=float)
result = benchmark(run_ddot, x, y)
# daxpy
daxpy_sizes = [100, 1000]
def run_daxpy(x, y,):
res = daxpy(x, y, a=2.0)
return res
@pytest.mark.parametrize('n', daxpy_sizes)
def test_daxpy(benchmark, n):
rndm = np.random.RandomState(1234)
x = np.array(rndm.uniform(size=(n,)), dtype=float)
y = np.array(rndm.uniform(size=(n,)), dtype=float)
result = benchmark(run_daxpy, x, y)
# ### BLAS level 3 ###
# dgemm
gemm_sizes = [100, 1000]
def run_gemm(a, b, c):
alpha = 1.0
res = dgemm(alpha, a, b, c=c, overwrite_c=True)
return res
@pytest.mark.parametrize('n', gemm_sizes)
def test_gemm(benchmark, n):
rndm = np.random.RandomState(1234)
a = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
b = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
c = np.empty((n, n), dtype=float, order='F')
result = benchmark(run_gemm, a, b, c)
assert result is c
# dsyrk
syrk_sizes = [100, 1000]
def run_syrk(a, c):
res = dsyrk(1.0, a, c=c, overwrite_c=True)
return res
@pytest.mark.parametrize('n', syrk_sizes)
def test_syrk(benchmark, n):
rndm = np.random.RandomState(1234)
a = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
c = np.empty((n, n), dtype=float, order='F')
result = benchmark(run_syrk, a, c)
assert result is c
# ### LAPACK ###
# linalg.solve
gesv_sizes = [100, 1000]
def run_gesv(a, b):
res = dgesv(a, b, overwrite_a=True, overwrite_b=True)
return res
@pytest.mark.parametrize('n', gesv_sizes)
def test_gesv(benchmark, n):
rndm = np.random.RandomState(1234)
a = (np.array(rndm.uniform(size=(n, n)), dtype=float, order='F') +
np.eye(n, order='F'))
b = np.array(rndm.uniform(size=(n, 1)), order='F')
lu, piv, x, info = benchmark(run_gesv, a, b)
assert lu is a
assert x is b
assert info == 0
# linalg.svd
gesdd_sizes = [(100, 5), (1000, 222)]
def run_gesdd(a, lwork):
res = dgesdd(a, lwork=lwork, full_matrices=False, overwrite_a=False)
return res
@pytest.mark.parametrize('mn', gesdd_sizes)
def test_gesdd(benchmark, mn):
m, n = mn
rndm = np.random.RandomState(1234)
a = np.array(rndm.uniform(size=(m, n)), dtype=float, order='F')
lwork, info = dgesdd_lwork(m, n)
lwork = int(lwork)
assert info == 0
u, s, vt, info = benchmark(run_gesdd, a, lwork)
assert info == 0
np.testing.assert_allclose(u @ np.diag(s) @ vt, a, atol=1e-13)
# linalg.eigh
syev_sizes = [50, 200]
def run_syev(a, lwork):
res = dsyev(a, lwork=lwork, overwrite_a=True)
return res
@pytest.mark.parametrize('n', syev_sizes)
def test_syev(benchmark, n):
rndm = np.random.RandomState(1234)
a = rndm.uniform(size=(n, n))
a = np.asarray(a + a.T, dtype=float, order='F')
a_ = a.copy()
lwork, info = dsyev_lwork(n)
lwork = int(lwork)
assert info == 0
w, v, info = benchmark(run_syev, a, lwork)
assert info == 0
assert a is v # overwrite_a=True