266 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			266 lines
		
	
	
		
			7.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZSTT22
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
 | |
| *                          LDWORK, RWORK, RESULT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            KBAND, LDU, LDWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
 | |
| *      $                   SD( * ), SE( * )
 | |
| *       COMPLEX*16         U( LDU, * ), WORK( LDWORK, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZSTT22  checks a set of M eigenvalues and eigenvectors,
 | |
| *>
 | |
| *>     A U = U S
 | |
| *>
 | |
| *> where A is Hermitian tridiagonal, the columns of U are unitary,
 | |
| *> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1).
 | |
| *> Two tests are performed:
 | |
| *>
 | |
| *>    RESULT(1) = | U* A U - S | / ( |A| m ulp )
 | |
| *>
 | |
| *>    RESULT(2) = | I - U*U | / ( m ulp )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The size of the matrix.  If it is zero, ZSTT22 does nothing.
 | |
| *>          It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of eigenpairs to check.  If it is zero, ZSTT22
 | |
| *>          does nothing.  It must be at least zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KBAND
 | |
| *> \verbatim
 | |
| *>          KBAND is INTEGER
 | |
| *>          The bandwidth of the matrix S.  It may only be zero or one.
 | |
| *>          If zero, then S is diagonal, and SE is not referenced.  If
 | |
| *>          one, then S is Hermitian tri-diagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AD
 | |
| *> \verbatim
 | |
| *>          AD is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal of the original (unfactored) matrix A.  A is
 | |
| *>          assumed to be Hermitian tridiagonal.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AE
 | |
| *> \verbatim
 | |
| *>          AE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The off-diagonal of the original (unfactored) matrix A.  A
 | |
| *>          is assumed to be Hermitian tridiagonal.  AE(1) is ignored,
 | |
| *>          AE(2) is the (1,2) and (2,1) element, etc.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SD
 | |
| *> \verbatim
 | |
| *>          SD is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal of the (Hermitian tri-) diagonal matrix S.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SE
 | |
| *> \verbatim
 | |
| *>          SE is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The off-diagonal of the (Hermitian tri-) diagonal matrix S.
 | |
| *>          Not referenced if KBSND=0.  If KBAND=1, then AE(1) is
 | |
| *>          ignored, SE(2) is the (1,2) and (2,1) element, etc.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array, dimension (LDU, N)
 | |
| *>          The unitary matrix in the decomposition.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of U.  LDU must be at least N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (LDWORK, M+1)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of WORK.  LDWORK must be at least
 | |
| *>          max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is DOUBLE PRECISION array, dimension (2)
 | |
| *>          The values computed by the two tests described above.  The
 | |
| *>          values are currently limited to 1/ulp, to avoid overflow.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complex16_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
 | |
|      $                   LDWORK, RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            KBAND, LDU, LDWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   AD( * ), AE( * ), RESULT( 2 ), RWORK( * ),
 | |
|      $                   SD( * ), SE( * )
 | |
|       COMPLEX*16         U( LDU, * ), WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
|       COMPLEX*16         CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | |
|      $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, K
 | |
|       DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
 | |
|       COMPLEX*16         AUKJ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
 | |
|       EXTERNAL           DLAMCH, ZLANGE, ZLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZGEMM
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       RESULT( 1 ) = ZERO
 | |
|       RESULT( 2 ) = ZERO
 | |
|       IF( N.LE.0 .OR. M.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       UNFL = DLAMCH( 'Safe minimum' )
 | |
|       ULP = DLAMCH( 'Epsilon' )
 | |
| *
 | |
| *     Do Test 1
 | |
| *
 | |
| *     Compute the 1-norm of A.
 | |
| *
 | |
|       IF( N.GT.1 ) THEN
 | |
|          ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
 | |
|          DO 10 J = 2, N - 1
 | |
|             ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
 | |
|      $              ABS( AE( J-1 ) ) )
 | |
|    10    CONTINUE
 | |
|          ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
 | |
|       ELSE
 | |
|          ANORM = ABS( AD( 1 ) )
 | |
|       END IF
 | |
|       ANORM = MAX( ANORM, UNFL )
 | |
| *
 | |
| *     Norm of U*AU - S
 | |
| *
 | |
|       DO 40 I = 1, M
 | |
|          DO 30 J = 1, M
 | |
|             WORK( I, J ) = CZERO
 | |
|             DO 20 K = 1, N
 | |
|                AUKJ = AD( K )*U( K, J )
 | |
|                IF( K.NE.N )
 | |
|      $            AUKJ = AUKJ + AE( K )*U( K+1, J )
 | |
|                IF( K.NE.1 )
 | |
|      $            AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
 | |
|                WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
 | |
|    20       CONTINUE
 | |
|    30    CONTINUE
 | |
|          WORK( I, I ) = WORK( I, I ) - SD( I )
 | |
|          IF( KBAND.EQ.1 ) THEN
 | |
|             IF( I.NE.1 )
 | |
|      $         WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
 | |
|             IF( I.NE.N )
 | |
|      $         WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
 | |
|          END IF
 | |
|    40 CONTINUE
 | |
| *
 | |
|       WNORM = ZLANSY( '1', 'L', M, WORK, M, RWORK )
 | |
| *
 | |
|       IF( ANORM.GT.WNORM ) THEN
 | |
|          RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
 | |
|       ELSE
 | |
|          IF( ANORM.LT.ONE ) THEN
 | |
|             RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
 | |
|          ELSE
 | |
|             RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Do Test 2
 | |
| *
 | |
| *     Compute  U*U - I
 | |
| *
 | |
|       CALL ZGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK,
 | |
|      $            M )
 | |
| *
 | |
|       DO 50 J = 1, M
 | |
|          WORK( J, J ) = WORK( J, J ) - ONE
 | |
|    50 CONTINUE
 | |
| *
 | |
|       RESULT( 2 ) = MIN( DBLE( M ), ZLANGE( '1', M, M, WORK, M,
 | |
|      $              RWORK ) ) / ( M*ULP )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZSTT22
 | |
| *
 | |
|       END
 |