262 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SPTEQR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SPTEQR + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spteqr.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spteqr.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spteqr.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          COMPZ
 | |
| *       INTEGER            INFO, LDZ, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SPTEQR computes all eigenvalues and, optionally, eigenvectors of a
 | |
| *> symmetric positive definite tridiagonal matrix by first factoring the
 | |
| *> matrix using SPTTRF, and then calling SBDSQR to compute the singular
 | |
| *> values of the bidiagonal factor.
 | |
| *>
 | |
| *> This routine computes the eigenvalues of the positive definite
 | |
| *> tridiagonal matrix to high relative accuracy.  This means that if the
 | |
| *> eigenvalues range over many orders of magnitude in size, then the
 | |
| *> small eigenvalues and corresponding eigenvectors will be computed
 | |
| *> more accurately than, for example, with the standard QR method.
 | |
| *>
 | |
| *> The eigenvectors of a full or band symmetric positive definite matrix
 | |
| *> can also be found if SSYTRD, SSPTRD, or SSBTRD has been used to
 | |
| *> reduce this matrix to tridiagonal form. (The reduction to tridiagonal
 | |
| *> form, however, may preclude the possibility of obtaining high
 | |
| *> relative accuracy in the small eigenvalues of the original matrix, if
 | |
| *> these eigenvalues range over many orders of magnitude.)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] COMPZ
 | |
| *> \verbatim
 | |
| *>          COMPZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only.
 | |
| *>          = 'V':  Compute eigenvectors of original symmetric
 | |
| *>                  matrix also.  Array Z contains the orthogonal
 | |
| *>                  matrix used to reduce the original matrix to
 | |
| *>                  tridiagonal form.
 | |
| *>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          On entry, the n diagonal elements of the tridiagonal
 | |
| *>          matrix.
 | |
| *>          On normal exit, D contains the eigenvalues, in descending
 | |
| *>          order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | |
| *>          matrix.
 | |
| *>          On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ, N)
 | |
| *>          On entry, if COMPZ = 'V', the orthogonal matrix used in the
 | |
| *>          reduction to tridiagonal form.
 | |
| *>          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
 | |
| *>          original symmetric matrix;
 | |
| *>          if COMPZ = 'I', the orthonormal eigenvectors of the
 | |
| *>          tridiagonal matrix.
 | |
| *>          If INFO > 0 on exit, Z contains the eigenvectors associated
 | |
| *>          with only the stored eigenvalues.
 | |
| *>          If  COMPZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          COMPZ = 'V' or 'I', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (4*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = i, and i is:
 | |
| *>                <= N  the Cholesky factorization of the matrix could
 | |
| *>                      not be performed because the i-th principal minor
 | |
| *>                      was not positive definite.
 | |
| *>                > N   the SVD algorithm failed to converge;
 | |
| *>                      if INFO = N+i, i off-diagonal elements of the
 | |
| *>                      bidiagonal factor did not converge to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realPTcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SPTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          COMPZ
 | |
|       INTEGER            INFO, LDZ, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SBDSQR, SLASET, SPTTRF, XERBLA
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               C( 1, 1 ), VT( 1, 1 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, ICOMPZ, NRU
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( LSAME( COMPZ, 'N' ) ) THEN
 | |
|          ICOMPZ = 0
 | |
|       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | |
|          ICOMPZ = 1
 | |
|       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | |
|          ICOMPZ = 2
 | |
|       ELSE
 | |
|          ICOMPZ = -1
 | |
|       END IF
 | |
|       IF( ICOMPZ.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( LDZ.LT.1 ) .OR. ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1,
 | |
|      $         N ) ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SPTEQR', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( ICOMPZ.GT.0 )
 | |
|      $      Z( 1, 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( ICOMPZ.EQ.2 )
 | |
|      $   CALL SLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
 | |
| *
 | |
| *     Call SPTTRF to factor the matrix.
 | |
| *
 | |
|       CALL SPTTRF( N, D, E, INFO )
 | |
|       IF( INFO.NE.0 )
 | |
|      $   RETURN
 | |
|       DO 10 I = 1, N
 | |
|          D( I ) = SQRT( D( I ) )
 | |
|    10 CONTINUE
 | |
|       DO 20 I = 1, N - 1
 | |
|          E( I ) = E( I )*D( I )
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Call SBDSQR to compute the singular values/vectors of the
 | |
| *     bidiagonal factor.
 | |
| *
 | |
|       IF( ICOMPZ.GT.0 ) THEN
 | |
|          NRU = N
 | |
|       ELSE
 | |
|          NRU = 0
 | |
|       END IF
 | |
|       CALL SBDSQR( 'Lower', N, 0, NRU, 0, D, E, VT, 1, Z, LDZ, C, 1,
 | |
|      $             WORK, INFO )
 | |
| *
 | |
| *     Square the singular values.
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          DO 30 I = 1, N
 | |
|             D( I ) = D( I )*D( I )
 | |
|    30    CONTINUE
 | |
|       ELSE
 | |
|          INFO = N + INFO
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SPTEQR
 | |
| *
 | |
|       END
 |