911 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			911 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CHETF2_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch-Kaufman ("rook") diagonal pivoting method (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CHETF2_ROOK + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chetf2_rook.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chetf2_rook.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chetf2_rook.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHETF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            A( LDA, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CHETF2_ROOK computes the factorization of a complex Hermitian matrix A
 | |
| *> using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
 | |
| *>
 | |
| *>    A = U*D*U**H  or  A = L*D*L**H
 | |
| *>
 | |
| *> where U (or L) is a product of permutation and unit upper (lower)
 | |
| *> triangular matrices, U**H is the conjugate transpose of U, and D is
 | |
| *> Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
 | |
| *>
 | |
| *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 | |
| *>          n-by-n upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading n-by-n lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>
 | |
| *>          On exit, the block diagonal matrix D and the multipliers used
 | |
| *>          to obtain the factor U or L (see below for further details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D.
 | |
| *>
 | |
| *>          If UPLO = 'U':
 | |
| *>             If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 | |
| *>             interchanged and D(k,k) is a 1-by-1 diagonal block.
 | |
| *>
 | |
| *>             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and
 | |
| *>             columns k and -IPIV(k) were interchanged and rows and
 | |
| *>             columns k-1 and -IPIV(k-1) were inerchaged,
 | |
| *>             D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
 | |
| *>
 | |
| *>          If UPLO = 'L':
 | |
| *>             If IPIV(k) > 0, then rows and columns k and IPIV(k)
 | |
| *>             were interchanged and D(k,k) is a 1-by-1 diagonal block.
 | |
| *>
 | |
| *>             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and
 | |
| *>             columns k and -IPIV(k) were interchanged and rows and
 | |
| *>             columns k+1 and -IPIV(k+1) were inerchaged,
 | |
| *>             D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -k, the k-th argument had an illegal value
 | |
| *>          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization
 | |
| *>               has been completed, but the block diagonal matrix D is
 | |
| *>               exactly singular, and division by zero will occur if it
 | |
| *>               is used to solve a system of equations.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2013
 | |
| *
 | |
| *> \ingroup complexHEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  If UPLO = 'U', then A = U*D*U**H, where
 | |
| *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
 | |
| *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
 | |
| *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 | |
| *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 | |
| *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
 | |
| *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 | |
| *>
 | |
| *>             (   I    v    0   )   k-s
 | |
| *>     U(k) =  (   0    I    0   )   s
 | |
| *>             (   0    0    I   )   n-k
 | |
| *>                k-s   s   n-k
 | |
| *>
 | |
| *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
 | |
| *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
 | |
| *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
 | |
| *>
 | |
| *>  If UPLO = 'L', then A = L*D*L**H, where
 | |
| *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 | |
| *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
 | |
| *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 | |
| *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 | |
| *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
 | |
| *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 | |
| *>
 | |
| *>             (   I    0     0   )  k-1
 | |
| *>     L(k) =  (   0    I     0   )  s
 | |
| *>             (   0    v     I   )  n-k-s+1
 | |
| *>                k-1   s  n-k-s+1
 | |
| *>
 | |
| *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
 | |
| *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
 | |
| *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  November 2013,  Igor Kozachenko,
 | |
| *>                  Computer Science Division,
 | |
| *>                  University of California, Berkeley
 | |
| *>
 | |
| *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
 | |
| *>                  School of Mathematics,
 | |
| *>                  University of Manchester
 | |
| *>
 | |
| *>  01-01-96 - Based on modifications by
 | |
| *>    J. Lewis, Boeing Computer Services Company
 | |
| *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHETF2_ROOK( UPLO, N, A, LDA, IPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.5.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2013
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            A( LDA, * )
 | |
| *     ..
 | |
| *
 | |
| *  ======================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       REAL               EIGHT, SEVTEN
 | |
|       PARAMETER          ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            DONE, UPPER
 | |
|       INTEGER            I, II, IMAX, ITEMP, J, JMAX, K, KK, KP, KSTEP,
 | |
|      $                   P
 | |
|       REAL               ABSAKK, ALPHA, COLMAX, D, D11, D22, R1, STEMP,
 | |
|      $                   ROWMAX, TT, SFMIN
 | |
|       COMPLEX            D12, D21, T, WK, WKM1, WKP1, Z
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
| *
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ICAMAX
 | |
|       REAL               SLAMCH, SLAPY2
 | |
|       EXTERNAL           LSAME, ICAMAX, SLAMCH, SLAPY2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, CSSCAL, CHER, CSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL   CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CHETF2_ROOK', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize ALPHA for use in choosing pivot block size.
 | |
| *
 | |
|       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | |
| *
 | |
| *     Compute machine safe minimum
 | |
| *
 | |
|       SFMIN = SLAMCH( 'S' )
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Factorize A as U*D*U**H using the upper triangle of A
 | |
| *
 | |
| *        K is the main loop index, decreasing from N to 1 in steps of
 | |
| *        1 or 2
 | |
| *
 | |
|          K = N
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        If K < 1, exit from loop
 | |
| *
 | |
|          IF( K.LT.1 )
 | |
|      $      GO TO 70
 | |
|          KSTEP = 1
 | |
|          P = K
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = ABS( REAL( A( K, K ) ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value.
 | |
| *        Determine both COLMAX and IMAX.
 | |
| *
 | |
|          IF( K.GT.1 ) THEN
 | |
|             IMAX = ICAMAX( K-1, A( 1, K ), 1 )
 | |
|             COLMAX = CABS1( A( IMAX, K ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( ( MAX( ABSAKK, COLMAX ).EQ.ZERO ) ) THEN
 | |
| *
 | |
| *           Column K is zero or underflow: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
|             A( K, K ) = REAL( A( K, K ) )
 | |
|          ELSE
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
| *           BEGIN pivot search
 | |
| *
 | |
| *           Case(1)
 | |
| *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
 | |
| *           (used to handle NaN and Inf)
 | |
| *
 | |
|             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                DONE = .FALSE.
 | |
| *
 | |
| *              Loop until pivot found
 | |
| *
 | |
|    12          CONTINUE
 | |
| *
 | |
| *                 BEGIN pivot search loop body
 | |
| *
 | |
| *
 | |
| *                 JMAX is the column-index of the largest off-diagonal
 | |
| *                 element in row IMAX, and ROWMAX is its absolute value.
 | |
| *                 Determine both ROWMAX and JMAX.
 | |
| *
 | |
|                   IF( IMAX.NE.K ) THEN
 | |
|                      JMAX = IMAX + ICAMAX( K-IMAX, A( IMAX, IMAX+1 ),
 | |
|      $                                     LDA )
 | |
|                      ROWMAX = CABS1( A( IMAX, JMAX ) )
 | |
|                   ELSE
 | |
|                      ROWMAX = ZERO
 | |
|                   END IF
 | |
| *
 | |
|                   IF( IMAX.GT.1 ) THEN
 | |
|                      ITEMP = ICAMAX( IMAX-1, A( 1, IMAX ), 1 )
 | |
|                      STEMP = CABS1( A( ITEMP, IMAX ) )
 | |
|                      IF( STEMP.GT.ROWMAX ) THEN
 | |
|                         ROWMAX = STEMP
 | |
|                         JMAX = ITEMP
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Case(2)
 | |
| *                 Equivalent to testing for
 | |
| *                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
 | |
| *                 (used to handle NaN and Inf)
 | |
| *
 | |
|                   IF( .NOT.( ABS( REAL( A( IMAX, IMAX ) ) )
 | |
|      $                       .LT.ALPHA*ROWMAX ) ) THEN
 | |
| *
 | |
| *                    interchange rows and columns K and IMAX,
 | |
| *                    use 1-by-1 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      DONE = .TRUE.
 | |
| *
 | |
| *                 Case(3)
 | |
| *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
 | |
| *                 (used to handle NaN and Inf)
 | |
| *
 | |
|                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
 | |
|      $            THEN
 | |
| *
 | |
| *                    interchange rows and columns K-1 and IMAX,
 | |
| *                    use 2-by-2 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      KSTEP = 2
 | |
|                      DONE = .TRUE.
 | |
| *
 | |
| *                 Case(4)
 | |
|                   ELSE
 | |
| *
 | |
| *                    Pivot not found: set params and repeat
 | |
| *
 | |
|                      P = IMAX
 | |
|                      COLMAX = ROWMAX
 | |
|                      IMAX = JMAX
 | |
|                   END IF
 | |
| *
 | |
| *                 END pivot search loop body
 | |
| *
 | |
|                IF( .NOT.DONE ) GOTO 12
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           END pivot search
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
| *           KK is the column of A where pivoting step stopped
 | |
| *
 | |
|             KK = K - KSTEP + 1
 | |
| *
 | |
| *           For only a 2x2 pivot, interchange rows and columns K and P
 | |
| *           in the leading submatrix A(1:k,1:k)
 | |
| *
 | |
|             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | |
| *              (1) Swap columnar parts
 | |
|                IF( P.GT.1 )
 | |
|      $            CALL CSWAP( P-1, A( 1, K ), 1, A( 1, P ), 1 )
 | |
| *              (2) Swap and conjugate middle parts
 | |
|                DO 14 J = P + 1, K - 1
 | |
|                   T = CONJG( A( J, K ) )
 | |
|                   A( J, K ) = CONJG( A( P, J ) )
 | |
|                   A( P, J ) = T
 | |
|    14          CONTINUE
 | |
| *              (3) Swap and conjugate corner elements at row-col interserction
 | |
|                A( P, K ) = CONJG( A( P, K ) )
 | |
| *              (4) Swap diagonal elements at row-col intersection
 | |
|                R1 = REAL( A( K, K ) )
 | |
|                A( K, K ) = REAL( A( P, P ) )
 | |
|                A( P, P ) = R1
 | |
|             END IF
 | |
| *
 | |
| *           For both 1x1 and 2x2 pivots, interchange rows and
 | |
| *           columns KK and KP in the leading submatrix A(1:k,1:k)
 | |
| *
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *              (1) Swap columnar parts
 | |
|                IF( KP.GT.1 )
 | |
|      $            CALL CSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
 | |
| *              (2) Swap and conjugate middle parts
 | |
|                DO 15 J = KP + 1, KK - 1
 | |
|                   T = CONJG( A( J, KK ) )
 | |
|                   A( J, KK ) = CONJG( A( KP, J ) )
 | |
|                   A( KP, J ) = T
 | |
|    15          CONTINUE
 | |
| *              (3) Swap and conjugate corner elements at row-col interserction
 | |
|                A( KP, KK ) = CONJG( A( KP, KK ) )
 | |
| *              (4) Swap diagonal elements at row-col intersection
 | |
|                R1 = REAL( A( KK, KK ) )
 | |
|                A( KK, KK ) = REAL( A( KP, KP ) )
 | |
|                A( KP, KP ) = R1
 | |
| *
 | |
|                IF( KSTEP.EQ.2 ) THEN
 | |
| *                 (*) Make sure that diagonal element of pivot is real
 | |
|                   A( K, K ) = REAL( A( K, K ) )
 | |
| *                 (5) Swap row elements
 | |
|                   T = A( K-1, K )
 | |
|                   A( K-1, K ) = A( KP, K )
 | |
|                   A( KP, K ) = T
 | |
|                END IF
 | |
|             ELSE
 | |
| *              (*) Make sure that diagonal element of pivot is real
 | |
|                A( K, K ) = REAL( A( K, K ) )
 | |
|                IF( KSTEP.EQ.2 )
 | |
|      $            A( K-1, K-1 ) = REAL( A( K-1, K-1 ) )
 | |
|             END IF
 | |
| *
 | |
| *           Update the leading submatrix
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column k now holds
 | |
| *
 | |
| *              W(k) = U(k)*D(k)
 | |
| *
 | |
| *              where U(k) is the k-th column of U
 | |
| *
 | |
|                IF( K.GT.1 ) THEN
 | |
| *
 | |
| *                 Perform a rank-1 update of A(1:k-1,1:k-1) and
 | |
| *                 store U(k) in column k
 | |
| *
 | |
|                   IF( ABS( REAL( A( K, K ) ) ).GE.SFMIN ) THEN
 | |
| *
 | |
| *                    Perform a rank-1 update of A(1:k-1,1:k-1) as
 | |
| *                    A := A - U(k)*D(k)*U(k)**T
 | |
| *                       = A - W(k)*1/D(k)*W(k)**T
 | |
| *
 | |
|                      D11 = ONE / REAL( A( K, K ) )
 | |
|                      CALL CHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
 | |
| *
 | |
| *                    Store U(k) in column k
 | |
| *
 | |
|                      CALL CSSCAL( K-1, D11, A( 1, K ), 1 )
 | |
|                   ELSE
 | |
| *
 | |
| *                    Store L(k) in column K
 | |
| *
 | |
|                      D11 = REAL( A( K, K ) )
 | |
|                      DO 16 II = 1, K - 1
 | |
|                         A( II, K ) = A( II, K ) / D11
 | |
|    16                CONTINUE
 | |
| *
 | |
| *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | |
| *                    A := A - U(k)*D(k)*U(k)**T
 | |
| *                       = A - W(k)*(1/D(k))*W(k)**T
 | |
| *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
 | |
| *
 | |
|                      CALL CHER( UPLO, K-1, -D11, A( 1, K ), 1, A, LDA )
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns k and k-1 now hold
 | |
| *
 | |
| *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
 | |
| *
 | |
| *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
 | |
| *              of U
 | |
| *
 | |
| *              Perform a rank-2 update of A(1:k-2,1:k-2) as
 | |
| *
 | |
| *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
 | |
| *                 = A - ( ( A(k-1)A(k) )*inv(D(k)) ) * ( A(k-1)A(k) )**T
 | |
| *
 | |
| *              and store L(k) and L(k+1) in columns k and k+1
 | |
| *
 | |
|                IF( K.GT.2 ) THEN
 | |
| *                 D = |A12|
 | |
|                   D = SLAPY2( REAL( A( K-1, K ) ),
 | |
|      $                AIMAG( A( K-1, K ) ) )
 | |
|                   D11 = A( K, K ) / D
 | |
|                   D22 = A( K-1, K-1 ) / D
 | |
|                   D12 = A( K-1, K ) / D
 | |
|                   TT = ONE / ( D11*D22-ONE )
 | |
| *
 | |
|                   DO 30 J = K - 2, 1, -1
 | |
| *
 | |
| *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
 | |
| *
 | |
|                      WKM1 = TT*( D11*A( J, K-1 )-CONJG( D12 )*
 | |
|      $                      A( J, K ) )
 | |
|                      WK = TT*( D22*A( J, K )-D12*A( J, K-1 ) )
 | |
| *
 | |
| *                    Perform a rank-2 update of A(1:k-2,1:k-2)
 | |
| *
 | |
|                      DO 20 I = J, 1, -1
 | |
|                         A( I, J ) = A( I, J ) -
 | |
|      $                              ( A( I, K ) / D )*CONJG( WK ) -
 | |
|      $                              ( A( I, K-1 ) / D )*CONJG( WKM1 )
 | |
|    20                CONTINUE
 | |
| *
 | |
| *                    Store U(k) and U(k-1) in cols k and k-1 for row J
 | |
| *
 | |
|                      A( J, K ) = WK / D
 | |
|                      A( J, K-1 ) = WKM1 / D
 | |
| *                    (*) Make sure that diagonal element of pivot is real
 | |
|                      A( J, J ) = CMPLX( REAL( A( J, J ) ), ZERO )
 | |
| *
 | |
|    30             CONTINUE
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -P
 | |
|             IPIV( K-1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Decrease K and return to the start of the main loop
 | |
| *
 | |
|          K = K - KSTEP
 | |
|          GO TO 10
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Factorize A as L*D*L**H using the lower triangle of A
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2
 | |
| *
 | |
|          K = 1
 | |
|    40    CONTINUE
 | |
| *
 | |
| *        If K > N, exit from loop
 | |
| *
 | |
|          IF( K.GT.N )
 | |
|      $      GO TO 70
 | |
|          KSTEP = 1
 | |
|          P = K
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = ABS( REAL( A( K, K ) ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value.
 | |
| *        Determine both COLMAX and IMAX.
 | |
| *
 | |
|          IF( K.LT.N ) THEN
 | |
|             IMAX = K + ICAMAX( N-K, A( K+1, K ), 1 )
 | |
|             COLMAX = CABS1( A( IMAX, K ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | |
| *
 | |
| *           Column K is zero or underflow: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
|             A( K, K ) = REAL( A( K, K ) )
 | |
|          ELSE
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
| *           BEGIN pivot search
 | |
| *
 | |
| *           Case(1)
 | |
| *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
 | |
| *           (used to handle NaN and Inf)
 | |
| *
 | |
|             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                DONE = .FALSE.
 | |
| *
 | |
| *              Loop until pivot found
 | |
| *
 | |
|    42          CONTINUE
 | |
| *
 | |
| *                 BEGIN pivot search loop body
 | |
| *
 | |
| *
 | |
| *                 JMAX is the column-index of the largest off-diagonal
 | |
| *                 element in row IMAX, and ROWMAX is its absolute value.
 | |
| *                 Determine both ROWMAX and JMAX.
 | |
| *
 | |
|                   IF( IMAX.NE.K ) THEN
 | |
|                      JMAX = K - 1 + ICAMAX( IMAX-K, A( IMAX, K ), LDA )
 | |
|                      ROWMAX = CABS1( A( IMAX, JMAX ) )
 | |
|                   ELSE
 | |
|                      ROWMAX = ZERO
 | |
|                   END IF
 | |
| *
 | |
|                   IF( IMAX.LT.N ) THEN
 | |
|                      ITEMP = IMAX + ICAMAX( N-IMAX, A( IMAX+1, IMAX ),
 | |
|      $                                     1 )
 | |
|                      STEMP = CABS1( A( ITEMP, IMAX ) )
 | |
|                      IF( STEMP.GT.ROWMAX ) THEN
 | |
|                         ROWMAX = STEMP
 | |
|                         JMAX = ITEMP
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Case(2)
 | |
| *                 Equivalent to testing for
 | |
| *                 ABS( REAL( W( IMAX,KW-1 ) ) ).GE.ALPHA*ROWMAX
 | |
| *                 (used to handle NaN and Inf)
 | |
| *
 | |
|                   IF( .NOT.( ABS( REAL( A( IMAX, IMAX ) ) )
 | |
|      $                       .LT.ALPHA*ROWMAX ) ) THEN
 | |
| *
 | |
| *                    interchange rows and columns K and IMAX,
 | |
| *                    use 1-by-1 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      DONE = .TRUE.
 | |
| *
 | |
| *                 Case(3)
 | |
| *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
 | |
| *                 (used to handle NaN and Inf)
 | |
| *
 | |
|                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
 | |
|      $            THEN
 | |
| *
 | |
| *                    interchange rows and columns K+1 and IMAX,
 | |
| *                    use 2-by-2 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      KSTEP = 2
 | |
|                      DONE = .TRUE.
 | |
| *
 | |
| *                 Case(4)
 | |
|                   ELSE
 | |
| *
 | |
| *                    Pivot not found: set params and repeat
 | |
| *
 | |
|                      P = IMAX
 | |
|                      COLMAX = ROWMAX
 | |
|                      IMAX = JMAX
 | |
|                   END IF
 | |
| *
 | |
| *
 | |
| *                 END pivot search loop body
 | |
| *
 | |
|                IF( .NOT.DONE ) GOTO 42
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           END pivot search
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
| *           KK is the column of A where pivoting step stopped
 | |
| *
 | |
|             KK = K + KSTEP - 1
 | |
| *
 | |
| *           For only a 2x2 pivot, interchange rows and columns K and P
 | |
| *           in the trailing submatrix A(k:n,k:n)
 | |
| *
 | |
|             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | |
| *              (1) Swap columnar parts
 | |
|                IF( P.LT.N )
 | |
|      $            CALL CSWAP( N-P, A( P+1, K ), 1, A( P+1, P ), 1 )
 | |
| *              (2) Swap and conjugate middle parts
 | |
|                DO 44 J = K + 1, P - 1
 | |
|                   T = CONJG( A( J, K ) )
 | |
|                   A( J, K ) = CONJG( A( P, J ) )
 | |
|                   A( P, J ) = T
 | |
|    44          CONTINUE
 | |
| *              (3) Swap and conjugate corner elements at row-col interserction
 | |
|                A( P, K ) = CONJG( A( P, K ) )
 | |
| *              (4) Swap diagonal elements at row-col intersection
 | |
|                R1 = REAL( A( K, K ) )
 | |
|                A( K, K ) = REAL( A( P, P ) )
 | |
|                A( P, P ) = R1
 | |
|             END IF
 | |
| *
 | |
| *           For both 1x1 and 2x2 pivots, interchange rows and
 | |
| *           columns KK and KP in the trailing submatrix A(k:n,k:n)
 | |
| *
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *              (1) Swap columnar parts
 | |
|                IF( KP.LT.N )
 | |
|      $            CALL CSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
 | |
| *              (2) Swap and conjugate middle parts
 | |
|                DO 45 J = KK + 1, KP - 1
 | |
|                   T = CONJG( A( J, KK ) )
 | |
|                   A( J, KK ) = CONJG( A( KP, J ) )
 | |
|                   A( KP, J ) = T
 | |
|    45          CONTINUE
 | |
| *              (3) Swap and conjugate corner elements at row-col interserction
 | |
|                A( KP, KK ) = CONJG( A( KP, KK ) )
 | |
| *              (4) Swap diagonal elements at row-col intersection
 | |
|                R1 = REAL( A( KK, KK ) )
 | |
|                A( KK, KK ) = REAL( A( KP, KP ) )
 | |
|                A( KP, KP ) = R1
 | |
| *
 | |
|                IF( KSTEP.EQ.2 ) THEN
 | |
| *                 (*) Make sure that diagonal element of pivot is real
 | |
|                   A( K, K ) = REAL( A( K, K ) )
 | |
| *                 (5) Swap row elements
 | |
|                   T = A( K+1, K )
 | |
|                   A( K+1, K ) = A( KP, K )
 | |
|                   A( KP, K ) = T
 | |
|                END IF
 | |
|             ELSE
 | |
| *              (*) Make sure that diagonal element of pivot is real
 | |
|                A( K, K ) = REAL( A( K, K ) )
 | |
|                IF( KSTEP.EQ.2 )
 | |
|      $            A( K+1, K+1 ) = REAL( A( K+1, K+1 ) )
 | |
|             END IF
 | |
| *
 | |
| *           Update the trailing submatrix
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column k of A now holds
 | |
| *
 | |
| *              W(k) = L(k)*D(k),
 | |
| *
 | |
| *              where L(k) is the k-th column of L
 | |
| *
 | |
|                IF( K.LT.N ) THEN
 | |
| *
 | |
| *                 Perform a rank-1 update of A(k+1:n,k+1:n) and
 | |
| *                 store L(k) in column k
 | |
| *
 | |
| *                 Handle division by a small number
 | |
| *
 | |
|                   IF( ABS( REAL( A( K, K ) ) ).GE.SFMIN ) THEN
 | |
| *
 | |
| *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | |
| *                    A := A - L(k)*D(k)*L(k)**T
 | |
| *                       = A - W(k)*(1/D(k))*W(k)**T
 | |
| *
 | |
|                      D11 = ONE / REAL( A( K, K ) )
 | |
|                      CALL CHER( UPLO, N-K, -D11, A( K+1, K ), 1,
 | |
|      $                          A( K+1, K+1 ), LDA )
 | |
| *
 | |
| *                    Store L(k) in column k
 | |
| *
 | |
|                      CALL CSSCAL( N-K, D11, A( K+1, K ), 1 )
 | |
|                   ELSE
 | |
| *
 | |
| *                    Store L(k) in column k
 | |
| *
 | |
|                      D11 = REAL( A( K, K ) )
 | |
|                      DO 46 II = K + 1, N
 | |
|                         A( II, K ) = A( II, K ) / D11
 | |
|    46                CONTINUE
 | |
| *
 | |
| *                    Perform a rank-1 update of A(k+1:n,k+1:n) as
 | |
| *                    A := A - L(k)*D(k)*L(k)**T
 | |
| *                       = A - W(k)*(1/D(k))*W(k)**T
 | |
| *                       = A - (W(k)/D(k))*(D(k))*(W(k)/D(K))**T
 | |
| *
 | |
|                      CALL CHER( UPLO, N-K, -D11, A( K+1, K ), 1,
 | |
|      $                          A( K+1, K+1 ), LDA )
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns k and k+1 now hold
 | |
| *
 | |
| *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 | |
| *
 | |
| *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 | |
| *              of L
 | |
| *
 | |
| *
 | |
| *              Perform a rank-2 update of A(k+2:n,k+2:n) as
 | |
| *
 | |
| *              A := A - ( L(k) L(k+1) ) * D(k) * ( L(k) L(k+1) )**T
 | |
| *                 = A - ( ( A(k)A(k+1) )*inv(D(k) ) * ( A(k)A(k+1) )**T
 | |
| *
 | |
| *              and store L(k) and L(k+1) in columns k and k+1
 | |
| *
 | |
|                IF( K.LT.N-1 ) THEN
 | |
| *                 D = |A21|
 | |
|                   D = SLAPY2( REAL( A( K+1, K ) ),
 | |
|      $                AIMAG( A( K+1, K ) ) )
 | |
|                   D11 = REAL( A( K+1, K+1 ) ) / D
 | |
|                   D22 = REAL( A( K, K ) ) / D
 | |
|                   D21 = A( K+1, K ) / D
 | |
|                   TT = ONE / ( D11*D22-ONE )
 | |
| *
 | |
|                   DO 60 J = K + 2, N
 | |
| *
 | |
| *                    Compute  D21 * ( W(k)W(k+1) ) * inv(D(k)) for row J
 | |
| *
 | |
|                      WK = TT*( D11*A( J, K )-D21*A( J, K+1 ) )
 | |
|                      WKP1 = TT*( D22*A( J, K+1 )-CONJG( D21 )*
 | |
|      $                      A( J, K ) )
 | |
| *
 | |
| *                    Perform a rank-2 update of A(k+2:n,k+2:n)
 | |
| *
 | |
|                      DO 50 I = J, N
 | |
|                         A( I, J ) = A( I, J ) -
 | |
|      $                              ( A( I, K ) / D )*CONJG( WK ) -
 | |
|      $                              ( A( I, K+1 ) / D )*CONJG( WKP1 )
 | |
|    50                CONTINUE
 | |
| *
 | |
| *                    Store L(k) and L(k+1) in cols k and k+1 for row J
 | |
| *
 | |
|                      A( J, K ) = WK / D
 | |
|                      A( J, K+1 ) = WKP1 / D
 | |
| *                    (*) Make sure that diagonal element of pivot is real
 | |
|                      A( J, J ) = CMPLX( REAL( A( J, J ) ), ZERO )
 | |
| *
 | |
|    60             CONTINUE
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -P
 | |
|             IPIV( K+1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Increase K and return to the start of the main loop
 | |
| *
 | |
|          K = K + KSTEP
 | |
|          GO TO 40
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|    70 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHETF2_ROOK
 | |
| *
 | |
|       END
 |