243 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			243 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
C> \brief \b DPOTRF VARIANT: right looking block version of the algorithm, calling Level 3 BLAS.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DPOTRF ( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
C>\details \b Purpose:
 | 
						|
C>\verbatim
 | 
						|
C>
 | 
						|
C> DPOTRF computes the Cholesky factorization of a real symmetric
 | 
						|
C> positive definite matrix A.
 | 
						|
C>
 | 
						|
C> The factorization has the form
 | 
						|
C>    A = U**T * U,  if UPLO = 'U', or
 | 
						|
C>    A = L  * L**T,  if UPLO = 'L',
 | 
						|
C> where U is an upper triangular matrix and L is lower triangular.
 | 
						|
C>
 | 
						|
C> This is the right looking block version of the algorithm, calling Level 3 BLAS.
 | 
						|
C>
 | 
						|
C>\endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
C> \param[in] UPLO
 | 
						|
C> \verbatim
 | 
						|
C>          UPLO is CHARACTER*1
 | 
						|
C>          = 'U':  Upper triangle of A is stored;
 | 
						|
C>          = 'L':  Lower triangle of A is stored.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in] N
 | 
						|
C> \verbatim
 | 
						|
C>          N is INTEGER
 | 
						|
C>          The order of the matrix A.  N >= 0.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in,out] A
 | 
						|
C> \verbatim
 | 
						|
C>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
C>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | 
						|
C>          N-by-N upper triangular part of A contains the upper
 | 
						|
C>          triangular part of the matrix A, and the strictly lower
 | 
						|
C>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
C>          leading N-by-N lower triangular part of A contains the lower
 | 
						|
C>          triangular part of the matrix A, and the strictly upper
 | 
						|
C>          triangular part of A is not referenced.
 | 
						|
C> \endverbatim
 | 
						|
C> \verbatim
 | 
						|
C>          On exit, if INFO = 0, the factor U or L from the Cholesky
 | 
						|
C>          factorization A = U**T*U or A = L*L**T.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in] LDA
 | 
						|
C> \verbatim
 | 
						|
C>          LDA is INTEGER
 | 
						|
C>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[out] INFO
 | 
						|
C> \verbatim
 | 
						|
C>          INFO is INTEGER
 | 
						|
C>          = 0:  successful exit
 | 
						|
C>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
C>          > 0:  if INFO = i, the leading minor of order i is not
 | 
						|
C>                positive definite, and the factorization could not be
 | 
						|
C>                completed.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
C> \author Univ. of Tennessee
 | 
						|
C> \author Univ. of California Berkeley
 | 
						|
C> \author Univ. of Colorado Denver
 | 
						|
C> \author NAG Ltd.
 | 
						|
*
 | 
						|
C> \date December 2016
 | 
						|
*
 | 
						|
C> \ingroup variantsPOcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DPOTRF ( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.1) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE
 | 
						|
      PARAMETER          ( ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            J, JB, NB
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      EXTERNAL           LSAME, ILAENV
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DPOTRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Determine the block size for this environment.
 | 
						|
*
 | 
						|
      NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
 | 
						|
      IF( NB.LE.1 .OR. NB.GE.N ) THEN
 | 
						|
*
 | 
						|
*        Use unblocked code.
 | 
						|
*
 | 
						|
         CALL DPOTF2( UPLO, N, A, LDA, INFO )
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Use blocked code.
 | 
						|
*
 | 
						|
         IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization A = U'*U.
 | 
						|
*
 | 
						|
            DO 10 J = 1, N, NB
 | 
						|
*
 | 
						|
*              Update and factorize the current diagonal block and test
 | 
						|
*              for non-positive-definiteness.
 | 
						|
*
 | 
						|
               JB = MIN( NB, N-J+1 )
 | 
						|
 | 
						|
               CALL DPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
 | 
						|
 | 
						|
               IF( INFO.NE.0 )
 | 
						|
     $            GO TO 30
 | 
						|
 | 
						|
               IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*                 Updating the trailing submatrix.
 | 
						|
*
 | 
						|
                  CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
 | 
						|
     $                        JB, N-J-JB+1, ONE, A( J, J ), LDA,
 | 
						|
     $                        A( J, J+JB ), LDA )
 | 
						|
                  CALL DSYRK( 'Upper', 'Transpose', N-J-JB+1, JB, -ONE,
 | 
						|
     $                        A( J, J+JB ), LDA,
 | 
						|
     $                        ONE, A( J+JB, J+JB ), LDA )
 | 
						|
               END IF
 | 
						|
   10       CONTINUE
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Compute the Cholesky factorization A = L*L'.
 | 
						|
*
 | 
						|
            DO 20 J = 1, N, NB
 | 
						|
*
 | 
						|
*              Update and factorize the current diagonal block and test
 | 
						|
*              for non-positive-definiteness.
 | 
						|
*
 | 
						|
               JB = MIN( NB, N-J+1 )
 | 
						|
 | 
						|
               CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
 | 
						|
 | 
						|
               IF( INFO.NE.0 )
 | 
						|
     $            GO TO 30
 | 
						|
 | 
						|
               IF( J+JB.LE.N ) THEN
 | 
						|
*
 | 
						|
*                Updating the trailing submatrix.
 | 
						|
*
 | 
						|
                 CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
 | 
						|
     $                       N-J-JB+1, JB, ONE, A( J, J ), LDA,
 | 
						|
     $                       A( J+JB, J ), LDA )
 | 
						|
 | 
						|
                 CALL DSYRK( 'Lower', 'No Transpose', N-J-JB+1, JB,
 | 
						|
     $                       -ONE, A( J+JB, J ), LDA,
 | 
						|
     $                       ONE, A( J+JB, J+JB ), LDA )
 | 
						|
               END IF
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      GO TO 40
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
      INFO = INFO + J - 1
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DPOTRF
 | 
						|
*
 | 
						|
      END
 |