213 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
      SUBROUTINE ZHERF  ( UPLO, N, ALPHA, X, INCX, A, LDA )
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION   ALPHA
 | 
						|
      INTEGER            INCX, LDA, N
 | 
						|
      CHARACTER*1        UPLO
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), X( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
*  ZHER   performs the hermitian rank 1 operation
 | 
						|
*
 | 
						|
*     A := alpha*x*conjg( x' ) + A,
 | 
						|
*
 | 
						|
*  where alpha is a real scalar, x is an n element vector and A is an
 | 
						|
*  n by n hermitian matrix.
 | 
						|
*
 | 
						|
*  Parameters
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*  UPLO   - CHARACTER*1.
 | 
						|
*           On entry, UPLO specifies whether the upper or lower
 | 
						|
*           triangular part of the array A is to be referenced as
 | 
						|
*           follows:
 | 
						|
*
 | 
						|
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
 | 
						|
*                                  is to be referenced.
 | 
						|
*
 | 
						|
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
 | 
						|
*                                  is to be referenced.
 | 
						|
*
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  N      - INTEGER.
 | 
						|
*           On entry, N specifies the order of the matrix A.
 | 
						|
*           N must be at least zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  ALPHA  - DOUBLE PRECISION.
 | 
						|
*           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  X      - COMPLEX*16       array of dimension at least
 | 
						|
*           ( 1 + ( n - 1 )*abs( INCX ) ).
 | 
						|
*           Before entry, the incremented array X must contain the n
 | 
						|
*           element vector x.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  INCX   - INTEGER.
 | 
						|
*           On entry, INCX specifies the increment for the elements of
 | 
						|
*           X. INCX must not be zero.
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
 | 
						|
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
 | 
						|
*           upper triangular part of the array A must contain the upper
 | 
						|
*           triangular part of the hermitian matrix and the strictly
 | 
						|
*           lower triangular part of A is not referenced. On exit, the
 | 
						|
*           upper triangular part of the array A is overwritten by the
 | 
						|
*           upper triangular part of the updated matrix.
 | 
						|
*           Before entry with UPLO = 'L' or 'l', the leading n by n
 | 
						|
*           lower triangular part of the array A must contain the lower
 | 
						|
*           triangular part of the hermitian matrix and the strictly
 | 
						|
*           upper triangular part of A is not referenced. On exit, the
 | 
						|
*           lower triangular part of the array A is overwritten by the
 | 
						|
*           lower triangular part of the updated matrix.
 | 
						|
*           Note that the imaginary parts of the diagonal elements need
 | 
						|
*           not be set, they are assumed to be zero, and on exit they
 | 
						|
*           are set to zero.
 | 
						|
*
 | 
						|
*  LDA    - INTEGER.
 | 
						|
*           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*           in the calling (sub) program. LDA must be at least
 | 
						|
*           max( 1, n ).
 | 
						|
*           Unchanged on exit.
 | 
						|
*
 | 
						|
*
 | 
						|
*  Level 2 Blas routine.
 | 
						|
*
 | 
						|
*  -- Written on 22-October-1986.
 | 
						|
*     Jack Dongarra, Argonne National Lab.
 | 
						|
*     Jeremy Du Croz, Nag Central Office.
 | 
						|
*     Sven Hammarling, Nag Central Office.
 | 
						|
*     Richard Hanson, Sandia National Labs.
 | 
						|
*
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ZERO
 | 
						|
      PARAMETER        ( ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     .. Local Scalars ..
 | 
						|
      COMPLEX*16         TEMP
 | 
						|
      INTEGER            I, INFO, IX, J, JX, KX
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DCONJG, MAX, DBLE
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF     ( .NOT.LSAME( UPLO, 'U' ).AND.
 | 
						|
     $         .NOT.LSAME( UPLO, 'L' )      )THEN
 | 
						|
         INFO = 1
 | 
						|
      ELSE IF( N.LT.0 )THEN
 | 
						|
         INFO = 2
 | 
						|
      ELSE IF( INCX.EQ.0 )THEN
 | 
						|
         INFO = 5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) )THEN
 | 
						|
         INFO = 7
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 )THEN
 | 
						|
         CALL XERBLA( 'ZHER  ', INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( N.EQ.0 ).OR.( ALPHA.EQ.DBLE( ZERO ) ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set the start point in X if the increment is not unity.
 | 
						|
*
 | 
						|
      IF( INCX.LE.0 )THEN
 | 
						|
         KX = 1 - ( N - 1 )*INCX
 | 
						|
      ELSE IF( INCX.NE.1 )THEN
 | 
						|
         KX = 1
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Start the operations. In this version the elements of A are
 | 
						|
*     accessed sequentially with one pass through the triangular part
 | 
						|
*     of A.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) )THEN
 | 
						|
*
 | 
						|
*        Form  A  when A is stored in upper triangle.
 | 
						|
*
 | 
						|
         IF( INCX.EQ.1 )THEN
 | 
						|
            DO 20, J = 1, N
 | 
						|
               IF( X( J ).NE.ZERO )THEN
 | 
						|
                  TEMP = ALPHA*DCONJG( X( J ) )
 | 
						|
                  DO 10, I = 1, J - 1
 | 
						|
                     A( I, J ) = A( I, J ) + X( I )*TEMP
 | 
						|
   10             CONTINUE
 | 
						|
                  A( J, J ) = DBLE( A( J, J ) ) + DBLE( X( J )*TEMP )
 | 
						|
               ELSE
 | 
						|
                  A( J, J ) = DBLE( A( J, J ) )
 | 
						|
               END IF
 | 
						|
   20       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            DO 40, J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO )THEN
 | 
						|
                  TEMP = ALPHA*DCONJG( X( JX ) )
 | 
						|
                  IX   = KX
 | 
						|
                  DO 30, I = 1, J - 1
 | 
						|
                     A( I, J ) = A( I, J ) + X( IX )*TEMP
 | 
						|
                     IX        = IX        + INCX
 | 
						|
   30             CONTINUE
 | 
						|
                  A( J, J ) = DBLE( A( J, J ) ) + DBLE( X( JX )*TEMP )
 | 
						|
               ELSE
 | 
						|
                  A( J, J ) = DBLE( A( J, J ) )
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
   40       CONTINUE
 | 
						|
         END IF
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  A  when A is stored in lower triangle.
 | 
						|
*
 | 
						|
         IF( INCX.EQ.1 )THEN
 | 
						|
            DO 60, J = 1, N
 | 
						|
               IF( X( J ).NE.ZERO )THEN
 | 
						|
                  TEMP      = ALPHA*DCONJG( X( J ) )
 | 
						|
                  A( J, J ) = DBLE( A( J, J ) ) + DBLE( TEMP*X( J ) )
 | 
						|
                  DO 50, I = J + 1, N
 | 
						|
                     A( I, J ) = A( I, J ) + X( I )*TEMP
 | 
						|
   50             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  A( J, J ) = DBLE( A( J, J ) )
 | 
						|
               END IF
 | 
						|
   60       CONTINUE
 | 
						|
         ELSE
 | 
						|
            JX = KX
 | 
						|
            DO 80, J = 1, N
 | 
						|
               IF( X( JX ).NE.ZERO )THEN
 | 
						|
                  TEMP      = ALPHA*DCONJG( X( JX ) )
 | 
						|
                  A( J, J ) = DBLE( A( J, J ) ) + DBLE( TEMP*X( JX ) )
 | 
						|
                  IX        = JX
 | 
						|
                  DO 70, I = J + 1, N
 | 
						|
                     IX        = IX        + INCX
 | 
						|
                     A( I, J ) = A( I, J ) + X( IX )*TEMP
 | 
						|
   70             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  A( J, J ) = DBLE( A( J, J ) )
 | 
						|
               END IF
 | 
						|
               JX = JX + INCX
 | 
						|
   80       CONTINUE
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZHER  .
 | 
						|
*
 | 
						|
      END
 |