282 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DPPT05
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DPPT05( UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT,
 | 
						|
*                          LDXACT, FERR, BERR, RESLTS )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDB, LDX, LDXACT, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
 | 
						|
*      $                   RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DPPT05 tests the error bounds from iterative refinement for the
 | 
						|
*> computed solution to a system of equations A*X = B, where A is a
 | 
						|
*> symmetric matrix in packed storage format.
 | 
						|
*>
 | 
						|
*> RESLTS(1) = test of the error bound
 | 
						|
*>           = norm(X - XACT) / ( norm(X) * FERR )
 | 
						|
*>
 | 
						|
*> A large value is returned if this ratio is not less than one.
 | 
						|
*>
 | 
						|
*> RESLTS(2) = residual from the iterative refinement routine
 | 
						|
*>           = the maximum of BERR / ( (n+1)*EPS + (*) ), where
 | 
						|
*>             (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          symmetric matrix A is stored.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows of the matrices X, B, and XACT, and the
 | 
						|
*>          order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of columns of the matrices X, B, and XACT.
 | 
						|
*>          NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          The upper or lower triangle of the symmetric matrix A, packed
 | 
						|
*>          columnwise in a linear array.  The j-th column of A is stored
 | 
						|
*>          in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | 
						|
*>          The right hand side vectors for the system of linear
 | 
						|
*>          equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*>          The computed solution vectors.  Each vector is stored as a
 | 
						|
*>          column of the matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] XACT
 | 
						|
*> \verbatim
 | 
						|
*>          XACT is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*>          The exact solution vectors.  Each vector is stored as a
 | 
						|
*>          column of the matrix XACT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDXACT
 | 
						|
*> \verbatim
 | 
						|
*>          LDXACT is INTEGER
 | 
						|
*>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] FERR
 | 
						|
*> \verbatim
 | 
						|
*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
 | 
						|
*>          The estimated forward error bounds for each solution vector
 | 
						|
*>          X.  If XTRUE is the true solution, FERR bounds the magnitude
 | 
						|
*>          of the largest entry in (X - XTRUE) divided by the magnitude
 | 
						|
*>          of the largest entry in X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BERR
 | 
						|
*> \verbatim
 | 
						|
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
 | 
						|
*>          The componentwise relative backward error of each solution
 | 
						|
*>          vector (i.e., the smallest relative change in any entry of A
 | 
						|
*>          or B that makes X an exact solution).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESLTS
 | 
						|
*> \verbatim
 | 
						|
*>          RESLTS is DOUBLE PRECISION array, dimension (2)
 | 
						|
*>          The maximum over the NRHS solution vectors of the ratios:
 | 
						|
*>          RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
 | 
						|
*>          RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup double_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DPPT05( UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT,
 | 
						|
     $                   LDXACT, FERR, BERR, RESLTS )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDB, LDX, LDXACT, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
 | 
						|
     $                   RESLTS( * ), X( LDX, * ), XACT( LDXACT, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            I, IMAX, J, JC, K
 | 
						|
      DOUBLE PRECISION   AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           LSAME, IDAMAX, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0 or NRHS = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | 
						|
         RESLTS( 1 ) = ZERO
 | 
						|
         RESLTS( 2 ) = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = ONE / UNFL
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
*
 | 
						|
*     Test 1:  Compute the maximum of
 | 
						|
*        norm(X - XACT) / ( norm(X) * FERR )
 | 
						|
*     over all the vectors X and XACT using the infinity-norm.
 | 
						|
*
 | 
						|
      ERRBND = ZERO
 | 
						|
      DO 30 J = 1, NRHS
 | 
						|
         IMAX = IDAMAX( N, X( 1, J ), 1 )
 | 
						|
         XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
 | 
						|
         DIFF = ZERO
 | 
						|
         DO 10 I = 1, N
 | 
						|
            DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
         IF( XNORM.GT.ONE ) THEN
 | 
						|
            GO TO 20
 | 
						|
         ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
 | 
						|
            GO TO 20
 | 
						|
         ELSE
 | 
						|
            ERRBND = ONE / EPS
 | 
						|
            GO TO 30
 | 
						|
         END IF
 | 
						|
*
 | 
						|
   20    CONTINUE
 | 
						|
         IF( DIFF / XNORM.LE.FERR( J ) ) THEN
 | 
						|
            ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
 | 
						|
         ELSE
 | 
						|
            ERRBND = ONE / EPS
 | 
						|
         END IF
 | 
						|
   30 CONTINUE
 | 
						|
      RESLTS( 1 ) = ERRBND
 | 
						|
*
 | 
						|
*     Test 2:  Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
 | 
						|
*     (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
 | 
						|
*
 | 
						|
      DO 90 K = 1, NRHS
 | 
						|
         DO 80 I = 1, N
 | 
						|
            TMP = ABS( B( I, K ) )
 | 
						|
            IF( UPPER ) THEN
 | 
						|
               JC = ( ( I-1 )*I ) / 2
 | 
						|
               DO 40 J = 1, I
 | 
						|
                  TMP = TMP + ABS( AP( JC+J ) )*ABS( X( J, K ) )
 | 
						|
   40          CONTINUE
 | 
						|
               JC = JC + I
 | 
						|
               DO 50 J = I + 1, N
 | 
						|
                  TMP = TMP + ABS( AP( JC ) )*ABS( X( J, K ) )
 | 
						|
                  JC = JC + J
 | 
						|
   50          CONTINUE
 | 
						|
            ELSE
 | 
						|
               JC = I
 | 
						|
               DO 60 J = 1, I - 1
 | 
						|
                  TMP = TMP + ABS( AP( JC ) )*ABS( X( J, K ) )
 | 
						|
                  JC = JC + N - J
 | 
						|
   60          CONTINUE
 | 
						|
               DO 70 J = I, N
 | 
						|
                  TMP = TMP + ABS( AP( JC+J-I ) )*ABS( X( J, K ) )
 | 
						|
   70          CONTINUE
 | 
						|
            END IF
 | 
						|
            IF( I.EQ.1 ) THEN
 | 
						|
               AXBI = TMP
 | 
						|
            ELSE
 | 
						|
               AXBI = MIN( AXBI, TMP )
 | 
						|
            END IF
 | 
						|
   80    CONTINUE
 | 
						|
         TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
 | 
						|
     $         MAX( AXBI, ( N+1 )*UNFL ) )
 | 
						|
         IF( K.EQ.1 ) THEN
 | 
						|
            RESLTS( 2 ) = TMP
 | 
						|
         ELSE
 | 
						|
            RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
 | 
						|
         END IF
 | 
						|
   90 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DPPT05
 | 
						|
*
 | 
						|
      END
 |