249 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			249 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLARRC + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrc.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrc.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrc.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
 | 
						|
*                                   EIGCNT, LCNT, RCNT, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBT
 | 
						|
*       INTEGER            EIGCNT, INFO, LCNT, N, RCNT
 | 
						|
*       DOUBLE PRECISION   PIVMIN, VL, VU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), E( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> Find the number of eigenvalues of the symmetric tridiagonal matrix T
 | 
						|
*> that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T
 | 
						|
*> if JOBT = 'L'.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBT
 | 
						|
*> \verbatim
 | 
						|
*>          JOBT is CHARACTER*1
 | 
						|
*>          = 'T':  Compute Sturm count for matrix T.
 | 
						|
*>          = 'L':  Compute Sturm count for matrix L D L^T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix. N > 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION
 | 
						|
*>          The lower bound for the eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VU
 | 
						|
*> \verbatim
 | 
						|
*>          VU is DOUBLE PRECISION
 | 
						|
*>          The upper bound for the eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          JOBT = 'T': The N diagonal elements of the tridiagonal matrix T.
 | 
						|
*>          JOBT = 'L': The N diagonal elements of the diagonal matrix D.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          JOBT = 'T': The N-1 offdiagonal elements of the matrix T.
 | 
						|
*>          JOBT = 'L': The N-1 offdiagonal elements of the matrix L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] PIVMIN
 | 
						|
*> \verbatim
 | 
						|
*>          PIVMIN is DOUBLE PRECISION
 | 
						|
*>          The minimum pivot in the Sturm sequence for T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] EIGCNT
 | 
						|
*> \verbatim
 | 
						|
*>          EIGCNT is INTEGER
 | 
						|
*>          The number of eigenvalues of the symmetric tridiagonal matrix T
 | 
						|
*>          that are in the interval (VL,VU]
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] LCNT
 | 
						|
*> \verbatim
 | 
						|
*>          LCNT is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCNT
 | 
						|
*> \verbatim
 | 
						|
*>          RCNT is INTEGER
 | 
						|
*>          The left and right negcounts of the interval.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup OTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Beresford Parlett, University of California, Berkeley, USA \n
 | 
						|
*> Jim Demmel, University of California, Berkeley, USA \n
 | 
						|
*> Inderjit Dhillon, University of Texas, Austin, USA \n
 | 
						|
*> Osni Marques, LBNL/NERSC, USA \n
 | 
						|
*> Christof Voemel, University of California, Berkeley, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLARRC( JOBT, N, VL, VU, D, E, PIVMIN,
 | 
						|
     $                            EIGCNT, LCNT, RCNT, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBT
 | 
						|
      INTEGER            EIGCNT, INFO, LCNT, N, RCNT
 | 
						|
      DOUBLE PRECISION   PIVMIN, VL, VU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), E( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I
 | 
						|
      LOGICAL            MATT
 | 
						|
      DOUBLE PRECISION   LPIVOT, RPIVOT, SL, SU, TMP, TMP2
 | 
						|
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LCNT = 0
 | 
						|
      RCNT = 0
 | 
						|
      EIGCNT = 0
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      MATT = LSAME( JOBT, 'T' )
 | 
						|
 | 
						|
 | 
						|
      IF (MATT) THEN
 | 
						|
*        Sturm sequence count on T
 | 
						|
         LPIVOT = D( 1 ) - VL
 | 
						|
         RPIVOT = D( 1 ) - VU
 | 
						|
         IF( LPIVOT.LE.ZERO ) THEN
 | 
						|
            LCNT = LCNT + 1
 | 
						|
         ENDIF
 | 
						|
         IF( RPIVOT.LE.ZERO ) THEN
 | 
						|
            RCNT = RCNT + 1
 | 
						|
         ENDIF
 | 
						|
         DO 10 I = 1, N-1
 | 
						|
            TMP = E(I)**2
 | 
						|
            LPIVOT = ( D( I+1 )-VL ) - TMP/LPIVOT
 | 
						|
            RPIVOT = ( D( I+1 )-VU ) - TMP/RPIVOT
 | 
						|
            IF( LPIVOT.LE.ZERO ) THEN
 | 
						|
               LCNT = LCNT + 1
 | 
						|
            ENDIF
 | 
						|
            IF( RPIVOT.LE.ZERO ) THEN
 | 
						|
               RCNT = RCNT + 1
 | 
						|
            ENDIF
 | 
						|
 10      CONTINUE
 | 
						|
      ELSE
 | 
						|
*        Sturm sequence count on L D L^T
 | 
						|
         SL = -VL
 | 
						|
         SU = -VU
 | 
						|
         DO 20 I = 1, N - 1
 | 
						|
            LPIVOT = D( I ) + SL
 | 
						|
            RPIVOT = D( I ) + SU
 | 
						|
            IF( LPIVOT.LE.ZERO ) THEN
 | 
						|
               LCNT = LCNT + 1
 | 
						|
            ENDIF
 | 
						|
            IF( RPIVOT.LE.ZERO ) THEN
 | 
						|
               RCNT = RCNT + 1
 | 
						|
            ENDIF
 | 
						|
            TMP = E(I) * D(I) * E(I)
 | 
						|
*
 | 
						|
            TMP2 = TMP / LPIVOT
 | 
						|
            IF( TMP2.EQ.ZERO ) THEN
 | 
						|
               SL =  TMP - VL
 | 
						|
            ELSE
 | 
						|
               SL = SL*TMP2 - VL
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            TMP2 = TMP / RPIVOT
 | 
						|
            IF( TMP2.EQ.ZERO ) THEN
 | 
						|
               SU =  TMP - VU
 | 
						|
            ELSE
 | 
						|
               SU = SU*TMP2 - VU
 | 
						|
            END IF
 | 
						|
 20      CONTINUE
 | 
						|
         LPIVOT = D( N ) + SL
 | 
						|
         RPIVOT = D( N ) + SU
 | 
						|
         IF( LPIVOT.LE.ZERO ) THEN
 | 
						|
            LCNT = LCNT + 1
 | 
						|
         ENDIF
 | 
						|
         IF( RPIVOT.LE.ZERO ) THEN
 | 
						|
            RCNT = RCNT + 1
 | 
						|
         ENDIF
 | 
						|
      ENDIF
 | 
						|
      EIGCNT = RCNT - LCNT
 | 
						|
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLARRC
 | 
						|
*
 | 
						|
      END
 |