329 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			329 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLA_GERCOND estimates the Skeel condition number for a general matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLA_GERCOND + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gercond.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gercond.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gercond.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       DOUBLE PRECISION FUNCTION DLA_GERCOND ( TRANS, N, A, LDA, AF,
 | 
						|
*                                               LDAF, IPIV, CMODE, C,
 | 
						|
*                                               INFO, WORK, IWORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          TRANS
 | 
						|
*       INTEGER            N, LDA, LDAF, INFO, CMODE
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * ), IWORK( * )
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ),
 | 
						|
*      $                   C( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>    DLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
 | 
						|
*>    where op2 is determined by CMODE as follows
 | 
						|
*>    CMODE =  1    op2(C) = C
 | 
						|
*>    CMODE =  0    op2(C) = I
 | 
						|
*>    CMODE = -1    op2(C) = inv(C)
 | 
						|
*>    The Skeel condition number cond(A) = norminf( |inv(A)||A| )
 | 
						|
*>    is computed by computing scaling factors R such that
 | 
						|
*>    diag(R)*A*op2(C) is row equilibrated and computing the standard
 | 
						|
*>    infinity-norm condition number.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>     Specifies the form of the system of equations:
 | 
						|
*>       = 'N':  A * X = B     (No transpose)
 | 
						|
*>       = 'T':  A**T * X = B  (Transpose)
 | 
						|
*>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>     The number of linear equations, i.e., the order of the
 | 
						|
*>     matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | 
						|
*>     On entry, the N-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>     The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
 | 
						|
*>     The factors L and U from the factorization
 | 
						|
*>     A = P*L*U as computed by DGETRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAF
 | 
						|
*> \verbatim
 | 
						|
*>          LDAF is INTEGER
 | 
						|
*>     The leading dimension of the array AF.  LDAF >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>     The pivot indices from the factorization A = P*L*U
 | 
						|
*>     as computed by DGETRF; row i of the matrix was interchanged
 | 
						|
*>     with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] CMODE
 | 
						|
*> \verbatim
 | 
						|
*>          CMODE is INTEGER
 | 
						|
*>     Determines op2(C) in the formula op(A) * op2(C) as follows:
 | 
						|
*>     CMODE =  1    op2(C) = C
 | 
						|
*>     CMODE =  0    op2(C) = I
 | 
						|
*>     CMODE = -1    op2(C) = inv(C)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>     The vector C in the formula op(A) * op2(C).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>       = 0:  Successful exit.
 | 
						|
*>     i > 0:  The ith argument is invalid.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (3*N).
 | 
						|
*>     Workspace.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N).
 | 
						|
*>     Workspace.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup doubleGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      DOUBLE PRECISION FUNCTION DLA_GERCOND ( TRANS, N, A, LDA, AF,
 | 
						|
     $                                        LDAF, IPIV, CMODE, C,
 | 
						|
     $                                        INFO, WORK, IWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          TRANS
 | 
						|
      INTEGER            N, LDA, LDAF, INFO, CMODE
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * ), IWORK( * )
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), WORK( * ),
 | 
						|
     $                   C( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOTRANS
 | 
						|
      INTEGER            KASE, I, J
 | 
						|
      DOUBLE PRECISION   AINVNM, TMP
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLACN2, DGETRS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      DLA_GERCOND = 0.0D+0
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NOTRANS = LSAME( TRANS, 'N' )
 | 
						|
      IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
 | 
						|
     $     .AND. .NOT. LSAME(TRANS, 'C') ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DLA_GERCOND', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         DLA_GERCOND = 1.0D+0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the equilibration matrix R such that
 | 
						|
*     inv(R)*A*C has unit 1-norm.
 | 
						|
*
 | 
						|
      IF (NOTRANS) THEN
 | 
						|
         DO I = 1, N
 | 
						|
            TMP = 0.0D+0
 | 
						|
            IF ( CMODE .EQ. 1 ) THEN
 | 
						|
               DO J = 1, N
 | 
						|
                  TMP = TMP + ABS( A( I, J ) * C( J ) )
 | 
						|
               END DO
 | 
						|
            ELSE IF ( CMODE .EQ. 0 ) THEN
 | 
						|
               DO J = 1, N
 | 
						|
                  TMP = TMP + ABS( A( I, J ) )
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
               DO J = 1, N
 | 
						|
                  TMP = TMP + ABS( A( I, J ) / C( J ) )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
            WORK( 2*N+I ) = TMP
 | 
						|
         END DO
 | 
						|
      ELSE
 | 
						|
         DO I = 1, N
 | 
						|
            TMP = 0.0D+0
 | 
						|
            IF ( CMODE .EQ. 1 ) THEN
 | 
						|
               DO J = 1, N
 | 
						|
                  TMP = TMP + ABS( A( J, I ) * C( J ) )
 | 
						|
               END DO
 | 
						|
            ELSE IF ( CMODE .EQ. 0 ) THEN
 | 
						|
               DO J = 1, N
 | 
						|
                  TMP = TMP + ABS( A( J, I ) )
 | 
						|
               END DO
 | 
						|
            ELSE
 | 
						|
               DO J = 1, N
 | 
						|
                  TMP = TMP + ABS( A( J, I ) / C( J ) )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
            WORK( 2*N+I ) = TMP
 | 
						|
         END DO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Estimate the norm of inv(op(A)).
 | 
						|
*
 | 
						|
      AINVNM = 0.0D+0
 | 
						|
 | 
						|
      KASE = 0
 | 
						|
   10 CONTINUE
 | 
						|
      CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
 | 
						|
      IF( KASE.NE.0 ) THEN
 | 
						|
         IF( KASE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*           Multiply by R.
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK(I) = WORK(I) * WORK(2*N+I)
 | 
						|
            END DO
 | 
						|
 | 
						|
            IF (NOTRANS) THEN
 | 
						|
               CALL DGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            ELSE
 | 
						|
               CALL DGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Multiply by inv(C).
 | 
						|
*
 | 
						|
            IF ( CMODE .EQ. 1 ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) / C( I )
 | 
						|
               END DO
 | 
						|
            ELSE IF ( CMODE .EQ. -1 ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) * C( I )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Multiply by inv(C**T).
 | 
						|
*
 | 
						|
            IF ( CMODE .EQ. 1 ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) / C( I )
 | 
						|
               END DO
 | 
						|
            ELSE IF ( CMODE .EQ. -1 ) THEN
 | 
						|
               DO I = 1, N
 | 
						|
                  WORK( I ) = WORK( I ) * C( I )
 | 
						|
               END DO
 | 
						|
            END IF
 | 
						|
 | 
						|
            IF (NOTRANS) THEN
 | 
						|
               CALL DGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            ELSE
 | 
						|
               CALL DGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
 | 
						|
     $            WORK, N, INFO )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Multiply by R.
 | 
						|
*
 | 
						|
            DO I = 1, N
 | 
						|
               WORK( I ) = WORK( I ) * WORK( 2*N+I )
 | 
						|
            END DO
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM .NE. 0.0D+0 )
 | 
						|
     $   DLA_GERCOND = ( 1.0D+0 / AINVNM )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLA_GERCOND
 | 
						|
*
 | 
						|
      END
 |