537 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			537 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAED2 used by SSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is tridiagonal.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLAED2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMBDA, W,
 | |
| *                          Q2, INDX, INDXC, INDXP, COLTYP, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, K, LDQ, N, N1
 | |
| *       REAL               RHO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
 | |
| *      $                   INDXQ( * )
 | |
| *       REAL               D( * ), DLAMBDA( * ), Q( LDQ, * ), Q2( * ),
 | |
| *      $                   W( * ), Z( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLAED2 merges the two sets of eigenvalues together into a single
 | |
| *> sorted set.  Then it tries to deflate the size of the problem.
 | |
| *> There are two ways in which deflation can occur:  when two or more
 | |
| *> eigenvalues are close together or if there is a tiny entry in the
 | |
| *> Z vector.  For each such occurrence the order of the related secular
 | |
| *> equation problem is reduced by one.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[out] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>         The number of non-deflated eigenvalues, and the order of the
 | |
| *>         related secular equation. 0 <= K <=N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N1
 | |
| *> \verbatim
 | |
| *>          N1 is INTEGER
 | |
| *>         The location of the last eigenvalue in the leading sub-matrix.
 | |
| *>         min(1,N) <= N1 <= N/2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>         On entry, D contains the eigenvalues of the two submatrices to
 | |
| *>         be combined.
 | |
| *>         On exit, D contains the trailing (N-K) updated eigenvalues
 | |
| *>         (those which were deflated) sorted into increasing order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ, N)
 | |
| *>         On entry, Q contains the eigenvectors of two submatrices in
 | |
| *>         the two square blocks with corners at (1,1), (N1,N1)
 | |
| *>         and (N1+1, N1+1), (N,N).
 | |
| *>         On exit, Q contains the trailing (N-K) updated eigenvectors
 | |
| *>         (those which were deflated) in its last N-K columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>         The leading dimension of the array Q.  LDQ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] INDXQ
 | |
| *> \verbatim
 | |
| *>          INDXQ is INTEGER array, dimension (N)
 | |
| *>         The permutation which separately sorts the two sub-problems
 | |
| *>         in D into ascending order.  Note that elements in the second
 | |
| *>         half of this permutation must first have N1 added to their
 | |
| *>         values. Destroyed on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RHO
 | |
| *> \verbatim
 | |
| *>          RHO is REAL
 | |
| *>         On entry, the off-diagonal element associated with the rank-1
 | |
| *>         cut which originally split the two submatrices which are now
 | |
| *>         being recombined.
 | |
| *>         On exit, RHO has been modified to the value required by
 | |
| *>         SLAED3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (N)
 | |
| *>         On entry, Z contains the updating vector (the last
 | |
| *>         row of the first sub-eigenvector matrix and the first row of
 | |
| *>         the second sub-eigenvector matrix).
 | |
| *>         On exit, the contents of Z have been destroyed by the updating
 | |
| *>         process.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DLAMBDA
 | |
| *> \verbatim
 | |
| *>          DLAMBDA is REAL array, dimension (N)
 | |
| *>         A copy of the first K eigenvalues which will be used by
 | |
| *>         SLAED3 to form the secular equation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>         The first k values of the final deflation-altered z-vector
 | |
| *>         which will be passed to SLAED3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q2
 | |
| *> \verbatim
 | |
| *>          Q2 is REAL array, dimension (N1**2+(N-N1)**2)
 | |
| *>         A copy of the first K eigenvectors which will be used by
 | |
| *>         SLAED3 in a matrix multiply (SGEMM) to solve for the new
 | |
| *>         eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INDX
 | |
| *> \verbatim
 | |
| *>          INDX is INTEGER array, dimension (N)
 | |
| *>         The permutation used to sort the contents of DLAMBDA into
 | |
| *>         ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INDXC
 | |
| *> \verbatim
 | |
| *>          INDXC is INTEGER array, dimension (N)
 | |
| *>         The permutation used to arrange the columns of the deflated
 | |
| *>         Q matrix into three groups:  the first group contains non-zero
 | |
| *>         elements only at and above N1, the second contains
 | |
| *>         non-zero elements only below N1, and the third is dense.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INDXP
 | |
| *> \verbatim
 | |
| *>          INDXP is INTEGER array, dimension (N)
 | |
| *>         The permutation used to place deflated values of D at the end
 | |
| *>         of the array.  INDXP(1:K) points to the nondeflated D-values
 | |
| *>         and INDXP(K+1:N) points to the deflated eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] COLTYP
 | |
| *> \verbatim
 | |
| *>          COLTYP is INTEGER array, dimension (N)
 | |
| *>         During execution, a label which will indicate which of the
 | |
| *>         following types a column in the Q2 matrix is:
 | |
| *>         1 : non-zero in the upper half only;
 | |
| *>         2 : dense;
 | |
| *>         3 : non-zero in the lower half only;
 | |
| *>         4 : deflated.
 | |
| *>         On exit, COLTYP(i) is the number of columns of type i,
 | |
| *>         for i=1 to 4 only.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Jeff Rutter, Computer Science Division, University of California
 | |
| *> at Berkeley, USA \n
 | |
| *>  Modified by Francoise Tisseur, University of Tennessee
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMBDA, W,
 | |
|      $                   Q2, INDX, INDXC, INDXP, COLTYP, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, K, LDQ, N, N1
 | |
|       REAL               RHO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
 | |
|      $                   INDXQ( * )
 | |
|       REAL               D( * ), DLAMBDA( * ), Q( LDQ, * ), Q2( * ),
 | |
|      $                   W( * ), Z( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               MONE, ZERO, ONE, TWO, EIGHT
 | |
|       PARAMETER          ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
 | |
|      $                   TWO = 2.0E0, EIGHT = 8.0E0 )
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            CTOT( 4 ), PSM( 4 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
 | |
|      $                   N2, NJ, PJ
 | |
|       REAL               C, EPS, S, T, TAU, TOL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ISAMAX
 | |
|       REAL               SLAMCH, SLAPY2
 | |
|       EXTERNAL           ISAMAX, SLAMCH, SLAPY2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SLACPY, SLAMRG, SROT, SSCAL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( MIN( 1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SLAED2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       N2 = N - N1
 | |
|       N1P1 = N1 + 1
 | |
| *
 | |
|       IF( RHO.LT.ZERO ) THEN
 | |
|          CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Normalize z so that norm(z) = 1.  Since z is the concatenation of
 | |
| *     two normalized vectors, norm2(z) = sqrt(2).
 | |
| *
 | |
|       T = ONE / SQRT( TWO )
 | |
|       CALL SSCAL( N, T, Z, 1 )
 | |
| *
 | |
| *     RHO = ABS( norm(z)**2 * RHO )
 | |
| *
 | |
|       RHO = ABS( TWO*RHO )
 | |
| *
 | |
| *     Sort the eigenvalues into increasing order
 | |
| *
 | |
|       DO 10 I = N1P1, N
 | |
|          INDXQ( I ) = INDXQ( I ) + N1
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     re-integrate the deflated parts from the last pass
 | |
| *
 | |
|       DO 20 I = 1, N
 | |
|          DLAMBDA( I ) = D( INDXQ( I ) )
 | |
|    20 CONTINUE
 | |
|       CALL SLAMRG( N1, N2, DLAMBDA, 1, 1, INDXC )
 | |
|       DO 30 I = 1, N
 | |
|          INDX( I ) = INDXQ( INDXC( I ) )
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Calculate the allowable deflation tolerance
 | |
| *
 | |
|       IMAX = ISAMAX( N, Z, 1 )
 | |
|       JMAX = ISAMAX( N, D, 1 )
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       TOL = EIGHT*EPS*MAX( ABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
 | |
| *
 | |
| *     If the rank-1 modifier is small enough, no more needs to be done
 | |
| *     except to reorganize Q so that its columns correspond with the
 | |
| *     elements in D.
 | |
| *
 | |
|       IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
 | |
|          K = 0
 | |
|          IQ2 = 1
 | |
|          DO 40 J = 1, N
 | |
|             I = INDX( J )
 | |
|             CALL SCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
 | |
|             DLAMBDA( J ) = D( I )
 | |
|             IQ2 = IQ2 + N
 | |
|    40    CONTINUE
 | |
|          CALL SLACPY( 'A', N, N, Q2, N, Q, LDQ )
 | |
|          CALL SCOPY( N, DLAMBDA, 1, D, 1 )
 | |
|          GO TO 190
 | |
|       END IF
 | |
| *
 | |
| *     If there are multiple eigenvalues then the problem deflates.  Here
 | |
| *     the number of equal eigenvalues are found.  As each equal
 | |
| *     eigenvalue is found, an elementary reflector is computed to rotate
 | |
| *     the corresponding eigensubspace so that the corresponding
 | |
| *     components of Z are zero in this new basis.
 | |
| *
 | |
|       DO 50 I = 1, N1
 | |
|          COLTYP( I ) = 1
 | |
|    50 CONTINUE
 | |
|       DO 60 I = N1P1, N
 | |
|          COLTYP( I ) = 3
 | |
|    60 CONTINUE
 | |
| *
 | |
| *
 | |
|       K = 0
 | |
|       K2 = N + 1
 | |
|       DO 70 J = 1, N
 | |
|          NJ = INDX( J )
 | |
|          IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
 | |
| *
 | |
| *           Deflate due to small z component.
 | |
| *
 | |
|             K2 = K2 - 1
 | |
|             COLTYP( NJ ) = 4
 | |
|             INDXP( K2 ) = NJ
 | |
|             IF( J.EQ.N )
 | |
|      $         GO TO 100
 | |
|          ELSE
 | |
|             PJ = NJ
 | |
|             GO TO 80
 | |
|          END IF
 | |
|    70 CONTINUE
 | |
|    80 CONTINUE
 | |
|       J = J + 1
 | |
|       NJ = INDX( J )
 | |
|       IF( J.GT.N )
 | |
|      $   GO TO 100
 | |
|       IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
 | |
| *
 | |
| *        Deflate due to small z component.
 | |
| *
 | |
|          K2 = K2 - 1
 | |
|          COLTYP( NJ ) = 4
 | |
|          INDXP( K2 ) = NJ
 | |
|       ELSE
 | |
| *
 | |
| *        Check if eigenvalues are close enough to allow deflation.
 | |
| *
 | |
|          S = Z( PJ )
 | |
|          C = Z( NJ )
 | |
| *
 | |
| *        Find sqrt(a**2+b**2) without overflow or
 | |
| *        destructive underflow.
 | |
| *
 | |
|          TAU = SLAPY2( C, S )
 | |
|          T = D( NJ ) - D( PJ )
 | |
|          C = C / TAU
 | |
|          S = -S / TAU
 | |
|          IF( ABS( T*C*S ).LE.TOL ) THEN
 | |
| *
 | |
| *           Deflation is possible.
 | |
| *
 | |
|             Z( NJ ) = TAU
 | |
|             Z( PJ ) = ZERO
 | |
|             IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
 | |
|      $         COLTYP( NJ ) = 2
 | |
|             COLTYP( PJ ) = 4
 | |
|             CALL SROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
 | |
|             T = D( PJ )*C**2 + D( NJ )*S**2
 | |
|             D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
 | |
|             D( PJ ) = T
 | |
|             K2 = K2 - 1
 | |
|             I = 1
 | |
|    90       CONTINUE
 | |
|             IF( K2+I.LE.N ) THEN
 | |
|                IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
 | |
|                   INDXP( K2+I-1 ) = INDXP( K2+I )
 | |
|                   INDXP( K2+I ) = PJ
 | |
|                   I = I + 1
 | |
|                   GO TO 90
 | |
|                ELSE
 | |
|                   INDXP( K2+I-1 ) = PJ
 | |
|                END IF
 | |
|             ELSE
 | |
|                INDXP( K2+I-1 ) = PJ
 | |
|             END IF
 | |
|             PJ = NJ
 | |
|          ELSE
 | |
|             K = K + 1
 | |
|             DLAMBDA( K ) = D( PJ )
 | |
|             W( K ) = Z( PJ )
 | |
|             INDXP( K ) = PJ
 | |
|             PJ = NJ
 | |
|          END IF
 | |
|       END IF
 | |
|       GO TO 80
 | |
|   100 CONTINUE
 | |
| *
 | |
| *     Record the last eigenvalue.
 | |
| *
 | |
|       K = K + 1
 | |
|       DLAMBDA( K ) = D( PJ )
 | |
|       W( K ) = Z( PJ )
 | |
|       INDXP( K ) = PJ
 | |
| *
 | |
| *     Count up the total number of the various types of columns, then
 | |
| *     form a permutation which positions the four column types into
 | |
| *     four uniform groups (although one or more of these groups may be
 | |
| *     empty).
 | |
| *
 | |
|       DO 110 J = 1, 4
 | |
|          CTOT( J ) = 0
 | |
|   110 CONTINUE
 | |
|       DO 120 J = 1, N
 | |
|          CT = COLTYP( J )
 | |
|          CTOT( CT ) = CTOT( CT ) + 1
 | |
|   120 CONTINUE
 | |
| *
 | |
| *     PSM(*) = Position in SubMatrix (of types 1 through 4)
 | |
| *
 | |
|       PSM( 1 ) = 1
 | |
|       PSM( 2 ) = 1 + CTOT( 1 )
 | |
|       PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
 | |
|       PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
 | |
|       K = N - CTOT( 4 )
 | |
| *
 | |
| *     Fill out the INDXC array so that the permutation which it induces
 | |
| *     will place all type-1 columns first, all type-2 columns next,
 | |
| *     then all type-3's, and finally all type-4's.
 | |
| *
 | |
|       DO 130 J = 1, N
 | |
|          JS = INDXP( J )
 | |
|          CT = COLTYP( JS )
 | |
|          INDX( PSM( CT ) ) = JS
 | |
|          INDXC( PSM( CT ) ) = J
 | |
|          PSM( CT ) = PSM( CT ) + 1
 | |
|   130 CONTINUE
 | |
| *
 | |
| *     Sort the eigenvalues and corresponding eigenvectors into DLAMBDA
 | |
| *     and Q2 respectively.  The eigenvalues/vectors which were not
 | |
| *     deflated go into the first K slots of DLAMBDA and Q2 respectively,
 | |
| *     while those which were deflated go into the last N - K slots.
 | |
| *
 | |
|       I = 1
 | |
|       IQ1 = 1
 | |
|       IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
 | |
|       DO 140 J = 1, CTOT( 1 )
 | |
|          JS = INDX( I )
 | |
|          CALL SCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
 | |
|          Z( I ) = D( JS )
 | |
|          I = I + 1
 | |
|          IQ1 = IQ1 + N1
 | |
|   140 CONTINUE
 | |
| *
 | |
|       DO 150 J = 1, CTOT( 2 )
 | |
|          JS = INDX( I )
 | |
|          CALL SCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
 | |
|          CALL SCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
 | |
|          Z( I ) = D( JS )
 | |
|          I = I + 1
 | |
|          IQ1 = IQ1 + N1
 | |
|          IQ2 = IQ2 + N2
 | |
|   150 CONTINUE
 | |
| *
 | |
|       DO 160 J = 1, CTOT( 3 )
 | |
|          JS = INDX( I )
 | |
|          CALL SCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
 | |
|          Z( I ) = D( JS )
 | |
|          I = I + 1
 | |
|          IQ2 = IQ2 + N2
 | |
|   160 CONTINUE
 | |
| *
 | |
|       IQ1 = IQ2
 | |
|       DO 170 J = 1, CTOT( 4 )
 | |
|          JS = INDX( I )
 | |
|          CALL SCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
 | |
|          IQ2 = IQ2 + N
 | |
|          Z( I ) = D( JS )
 | |
|          I = I + 1
 | |
|   170 CONTINUE
 | |
| *
 | |
| *     The deflated eigenvalues and their corresponding vectors go back
 | |
| *     into the last N - K slots of D and Q respectively.
 | |
| *
 | |
|       IF( K.LT.N ) THEN
 | |
|          CALL SLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N,
 | |
|      $                Q( 1, K+1 ), LDQ )
 | |
|          CALL SCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Copy CTOT into COLTYP for referencing in SLAED3.
 | |
| *
 | |
|       DO 180 J = 1, 4
 | |
|          COLTYP( J ) = CTOT( J )
 | |
|   180 CONTINUE
 | |
| *
 | |
|   190 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLAED2
 | |
| *
 | |
|       END
 |