1712 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1712 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static integer c__1 = 1;
 | 
						|
static real c_b36 = .5f;
 | 
						|
 | 
						|
/* > \brief \b CLATRS solves a triangular system of equations with the scale factor set to prevent overflow. 
 | 
						|
*/
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CLATRS + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatrs.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatrs.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatrs.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, */
 | 
						|
/*                          CNORM, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          DIAG, NORMIN, TRANS, UPLO */
 | 
						|
/*       INTEGER            INFO, LDA, N */
 | 
						|
/*       REAL               SCALE */
 | 
						|
/*       REAL               CNORM( * ) */
 | 
						|
/*       COMPLEX            A( LDA, * ), X( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CLATRS solves one of the triangular systems */
 | 
						|
/* > */
 | 
						|
/* >    A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b, */
 | 
						|
/* > */
 | 
						|
/* > with scaling to prevent overflow.  Here A is an upper or lower */
 | 
						|
/* > triangular matrix, A**T denotes the transpose of A, A**H denotes the */
 | 
						|
/* > conjugate transpose of A, x and b are n-element vectors, and s is a */
 | 
						|
/* > scaling factor, usually less than or equal to 1, chosen so that the */
 | 
						|
/* > components of x will be less than the overflow threshold.  If the */
 | 
						|
/* > unscaled problem will not cause overflow, the Level 2 BLAS routine */
 | 
						|
/* > CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j), */
 | 
						|
/* > then s is set to 0 and a non-trivial solution to A*x = 0 is returned. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] UPLO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          UPLO is CHARACTER*1 */
 | 
						|
/* >          Specifies whether the matrix A is upper or lower triangular. */
 | 
						|
/* >          = 'U':  Upper triangular */
 | 
						|
/* >          = 'L':  Lower triangular */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] TRANS */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          TRANS is CHARACTER*1 */
 | 
						|
/* >          Specifies the operation applied to A. */
 | 
						|
/* >          = 'N':  Solve A * x = s*b     (No transpose) */
 | 
						|
/* >          = 'T':  Solve A**T * x = s*b  (Transpose) */
 | 
						|
/* >          = 'C':  Solve A**H * x = s*b  (Conjugate transpose) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] DIAG */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          DIAG is CHARACTER*1 */
 | 
						|
/* >          Specifies whether or not the matrix A is unit triangular. */
 | 
						|
/* >          = 'N':  Non-unit triangular */
 | 
						|
/* >          = 'U':  Unit triangular */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] NORMIN */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          NORMIN is CHARACTER*1 */
 | 
						|
/* >          Specifies whether CNORM has been set or not. */
 | 
						|
/* >          = 'Y':  CNORM contains the column norms on entry */
 | 
						|
/* >          = 'N':  CNORM is not set on entry.  On exit, the norms will */
 | 
						|
/* >                  be computed and stored in CNORM. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrix A.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX array, dimension (LDA,N) */
 | 
						|
/* >          The triangular matrix A.  If UPLO = 'U', the leading n by n */
 | 
						|
/* >          upper triangular part of the array A contains the upper */
 | 
						|
/* >          triangular matrix, and the strictly lower triangular part of */
 | 
						|
/* >          A is not referenced.  If UPLO = 'L', the leading n by n lower */
 | 
						|
/* >          triangular part of the array A contains the lower triangular */
 | 
						|
/* >          matrix, and the strictly upper triangular part of A is not */
 | 
						|
/* >          referenced.  If DIAG = 'U', the diagonal elements of A are */
 | 
						|
/* >          also not referenced and are assumed to be 1. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of the array A.  LDA >= f2cmax (1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is COMPLEX array, dimension (N) */
 | 
						|
/* >          On entry, the right hand side b of the triangular system. */
 | 
						|
/* >          On exit, X is overwritten by the solution vector x. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] SCALE */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          SCALE is REAL */
 | 
						|
/* >          The scaling factor s for the triangular system */
 | 
						|
/* >             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b. */
 | 
						|
/* >          If SCALE = 0, the matrix A is singular or badly scaled, and */
 | 
						|
/* >          the vector x is an exact or approximate solution to A*x = 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] CNORM */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          CNORM is REAL array, dimension (N) */
 | 
						|
/* > */
 | 
						|
/* >          If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
 | 
						|
/* >          contains the norm of the off-diagonal part of the j-th column */
 | 
						|
/* >          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal */
 | 
						|
/* >          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
 | 
						|
/* >          must be greater than or equal to the 1-norm. */
 | 
						|
/* > */
 | 
						|
/* >          If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
 | 
						|
/* >          returns the 1-norm of the offdiagonal part of the j-th column */
 | 
						|
/* >          of A. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -k, the k-th argument had an illegal value */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexOTHERauxiliary */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  A rough bound on x is computed; if that is less than overflow, CTRSV */
 | 
						|
/* >  is called, otherwise, specific code is used which checks for possible */
 | 
						|
/* >  overflow or divide-by-zero at every operation. */
 | 
						|
/* > */
 | 
						|
/* >  A columnwise scheme is used for solving A*x = b.  The basic algorithm */
 | 
						|
/* >  if A is lower triangular is */
 | 
						|
/* > */
 | 
						|
/* >       x[1:n] := b[1:n] */
 | 
						|
/* >       for j = 1, ..., n */
 | 
						|
/* >            x(j) := x(j) / A(j,j) */
 | 
						|
/* >            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
 | 
						|
/* >       end */
 | 
						|
/* > */
 | 
						|
/* >  Define bounds on the components of x after j iterations of the loop: */
 | 
						|
/* >     M(j) = bound on x[1:j] */
 | 
						|
/* >     G(j) = bound on x[j+1:n] */
 | 
						|
/* >  Initially, let M(0) = 0 and G(0) = f2cmax{x(i), i=1,...,n}. */
 | 
						|
/* > */
 | 
						|
/* >  Then for iteration j+1 we have */
 | 
						|
/* >     M(j+1) <= G(j) / | A(j+1,j+1) | */
 | 
						|
/* >     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
 | 
						|
/* >            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
 | 
						|
/* > */
 | 
						|
/* >  where CNORM(j+1) is greater than or equal to the infinity-norm of */
 | 
						|
/* >  column j+1 of A, not counting the diagonal.  Hence */
 | 
						|
/* > */
 | 
						|
/* >     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
 | 
						|
/* >                  1<=i<=j */
 | 
						|
/* >  and */
 | 
						|
/* > */
 | 
						|
/* >     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
 | 
						|
/* >                                   1<=i< j */
 | 
						|
/* > */
 | 
						|
/* >  Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the */
 | 
						|
/* >  reciprocal of the largest M(j), j=1,..,n, is larger than */
 | 
						|
/* >  f2cmax(underflow, 1/overflow). */
 | 
						|
/* > */
 | 
						|
/* >  The bound on x(j) is also used to determine when a step in the */
 | 
						|
/* >  columnwise method can be performed without fear of overflow.  If */
 | 
						|
/* >  the computed bound is greater than a large constant, x is scaled to */
 | 
						|
/* >  prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
 | 
						|
/* >  1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
 | 
						|
/* > */
 | 
						|
/* >  Similarly, a row-wise scheme is used to solve A**T *x = b  or */
 | 
						|
/* >  A**H *x = b.  The basic algorithm for A upper triangular is */
 | 
						|
/* > */
 | 
						|
/* >       for j = 1, ..., n */
 | 
						|
/* >            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j) */
 | 
						|
/* >       end */
 | 
						|
/* > */
 | 
						|
/* >  We simultaneously compute two bounds */
 | 
						|
/* >       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j */
 | 
						|
/* >       M(j) = bound on x(i), 1<=i<=j */
 | 
						|
/* > */
 | 
						|
/* >  The initial values are G(0) = 0, M(0) = f2cmax{b(i), i=1,..,n}, and we */
 | 
						|
/* >  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
 | 
						|
/* >  Then the bound on x(j) is */
 | 
						|
/* > */
 | 
						|
/* >       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
 | 
						|
/* > */
 | 
						|
/* >            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
 | 
						|
/* >                      1<=i<=j */
 | 
						|
/* > */
 | 
						|
/* >  and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater */
 | 
						|
/* >  than f2cmax(underflow, 1/overflow). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void clatrs_(char *uplo, char *trans, char *diag, char *
 | 
						|
	normin, integer *n, complex *a, integer *lda, complex *x, real *scale,
 | 
						|
	 real *cnorm, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
 | 
						|
    real r__1, r__2, r__3, r__4;
 | 
						|
    complex q__1, q__2, q__3, q__4;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    integer jinc;
 | 
						|
    real xbnd;
 | 
						|
    integer imax;
 | 
						|
    real tmax;
 | 
						|
    complex tjjs;
 | 
						|
    real xmax, grow;
 | 
						|
    integer i__, j;
 | 
						|
    extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer 
 | 
						|
	    *, complex *, integer *);
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | 
						|
    real tscal;
 | 
						|
    complex uscal;
 | 
						|
    integer jlast;
 | 
						|
    extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer 
 | 
						|
	    *, complex *, integer *);
 | 
						|
    complex csumj;
 | 
						|
    extern /* Subroutine */ void caxpy_(integer *, complex *, complex *, 
 | 
						|
	    integer *, complex *, integer *);
 | 
						|
    logical upper;
 | 
						|
    extern /* Subroutine */ void ctrsv_(char *, char *, char *, integer *, 
 | 
						|
	    complex *, integer *, complex *, integer *), slabad_(real *, real *);
 | 
						|
    real xj;
 | 
						|
    extern integer icamax_(integer *, complex *, integer *);
 | 
						|
    extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
 | 
						|
    extern real slamch_(char *);
 | 
						|
    extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer 
 | 
						|
	    *);
 | 
						|
    extern int xerbla_(char *, integer *, ftnlen);
 | 
						|
    real bignum;
 | 
						|
    extern integer isamax_(integer *, real *, integer *);
 | 
						|
    extern real scasum_(integer *, complex *, integer *);
 | 
						|
    logical notran;
 | 
						|
    integer jfirst;
 | 
						|
    real smlnum;
 | 
						|
    logical nounit;
 | 
						|
    real rec, tjj;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    --x;
 | 
						|
    --cnorm;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    *info = 0;
 | 
						|
    upper = lsame_(uplo, "U");
 | 
						|
    notran = lsame_(trans, "N");
 | 
						|
    nounit = lsame_(diag, "N");
 | 
						|
 | 
						|
/*     Test the input parameters. */
 | 
						|
 | 
						|
    if (! upper && ! lsame_(uplo, "L")) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (! notran && ! lsame_(trans, "T") && ! 
 | 
						|
	    lsame_(trans, "C")) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (! nounit && ! lsame_(diag, "U")) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (! lsame_(normin, "Y") && ! lsame_(normin,
 | 
						|
	     "N")) {
 | 
						|
	*info = -4;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -7;
 | 
						|
    }
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CLATRS", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Determine machine dependent parameters to control overflow. */
 | 
						|
 | 
						|
    smlnum = slamch_("Safe minimum");
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
    slabad_(&smlnum, &bignum);
 | 
						|
    smlnum /= slamch_("Precision");
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
    *scale = 1.f;
 | 
						|
 | 
						|
    if (lsame_(normin, "N")) {
 | 
						|
 | 
						|
/*        Compute the 1-norm of each column, not including the diagonal. */
 | 
						|
 | 
						|
	if (upper) {
 | 
						|
 | 
						|
/*           A is upper triangular. */
 | 
						|
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = j - 1;
 | 
						|
		cnorm[j] = scasum_(&i__2, &a[j * a_dim1 + 1], &c__1);
 | 
						|
/* L10: */
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           A is lower triangular. */
 | 
						|
 | 
						|
	    i__1 = *n - 1;
 | 
						|
	    for (j = 1; j <= i__1; ++j) {
 | 
						|
		i__2 = *n - j;
 | 
						|
		cnorm[j] = scasum_(&i__2, &a[j + 1 + j * a_dim1], &c__1);
 | 
						|
/* L20: */
 | 
						|
	    }
 | 
						|
	    cnorm[*n] = 0.f;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Scale the column norms by TSCAL if the maximum element in CNORM is */
 | 
						|
/*     greater than BIGNUM/2. */
 | 
						|
 | 
						|
    imax = isamax_(n, &cnorm[1], &c__1);
 | 
						|
    tmax = cnorm[imax];
 | 
						|
    if (tmax <= bignum * .5f) {
 | 
						|
	tscal = 1.f;
 | 
						|
    } else {
 | 
						|
	tscal = .5f / (smlnum * tmax);
 | 
						|
	sscal_(n, &tscal, &cnorm[1], &c__1);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute a bound on the computed solution vector to see if the */
 | 
						|
/*     Level 2 BLAS routine CTRSV can be used. */
 | 
						|
 | 
						|
    xmax = 0.f;
 | 
						|
    i__1 = *n;
 | 
						|
    for (j = 1; j <= i__1; ++j) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__2 = j;
 | 
						|
	r__3 = xmax, r__4 = (r__1 = x[i__2].r / 2.f, abs(r__1)) + (r__2 = 
 | 
						|
		r_imag(&x[j]) / 2.f, abs(r__2));
 | 
						|
	xmax = f2cmax(r__3,r__4);
 | 
						|
/* L30: */
 | 
						|
    }
 | 
						|
    xbnd = xmax;
 | 
						|
 | 
						|
    if (notran) {
 | 
						|
 | 
						|
/*        Compute the growth in A * x = b. */
 | 
						|
 | 
						|
	if (upper) {
 | 
						|
	    jfirst = *n;
 | 
						|
	    jlast = 1;
 | 
						|
	    jinc = -1;
 | 
						|
	} else {
 | 
						|
	    jfirst = 1;
 | 
						|
	    jlast = *n;
 | 
						|
	    jinc = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tscal != 1.f) {
 | 
						|
	    grow = 0.f;
 | 
						|
	    goto L60;
 | 
						|
	}
 | 
						|
 | 
						|
	if (nounit) {
 | 
						|
 | 
						|
/*           A is non-unit triangular. */
 | 
						|
 | 
						|
/*           Compute GROW = 1/G(j) and XBND = 1/M(j). */
 | 
						|
/*           Initially, G(0) = f2cmax{x(i), i=1,...,n}. */
 | 
						|
 | 
						|
	    grow = .5f / f2cmax(xbnd,smlnum);
 | 
						|
	    xbnd = grow;
 | 
						|
	    i__1 = jlast;
 | 
						|
	    i__2 = jinc;
 | 
						|
	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | 
						|
 | 
						|
/*              Exit the loop if the growth factor is too small. */
 | 
						|
 | 
						|
		if (grow <= smlnum) {
 | 
						|
		    goto L60;
 | 
						|
		}
 | 
						|
 | 
						|
		i__3 = j + j * a_dim1;
 | 
						|
		tjjs.r = a[i__3].r, tjjs.i = a[i__3].i;
 | 
						|
		tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
 | 
						|
			r__2));
 | 
						|
 | 
						|
		if (tjj >= smlnum) {
 | 
						|
 | 
						|
/*                 M(j) = G(j-1) / abs(A(j,j)) */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
		    r__1 = xbnd, r__2 = f2cmin(1.f,tjj) * grow;
 | 
						|
		    xbnd = f2cmin(r__1,r__2);
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 M(j) could overflow, set XBND to 0. */
 | 
						|
 | 
						|
		    xbnd = 0.f;
 | 
						|
		}
 | 
						|
 | 
						|
		if (tjj + cnorm[j] >= smlnum) {
 | 
						|
 | 
						|
/*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
 | 
						|
 | 
						|
		    grow *= tjj / (tjj + cnorm[j]);
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 G(j) could overflow, set GROW to 0. */
 | 
						|
 | 
						|
		    grow = 0.f;
 | 
						|
		}
 | 
						|
/* L40: */
 | 
						|
	    }
 | 
						|
	    grow = xbnd;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           A is unit triangular. */
 | 
						|
 | 
						|
/*           Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
	    r__1 = 1.f, r__2 = .5f / f2cmax(xbnd,smlnum);
 | 
						|
	    grow = f2cmin(r__1,r__2);
 | 
						|
	    i__2 = jlast;
 | 
						|
	    i__1 = jinc;
 | 
						|
	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 | 
						|
 | 
						|
/*              Exit the loop if the growth factor is too small. */
 | 
						|
 | 
						|
		if (grow <= smlnum) {
 | 
						|
		    goto L60;
 | 
						|
		}
 | 
						|
 | 
						|
/*              G(j) = G(j-1)*( 1 + CNORM(j) ) */
 | 
						|
 | 
						|
		grow *= 1.f / (cnorm[j] + 1.f);
 | 
						|
/* L50: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
L60:
 | 
						|
 | 
						|
	;
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Compute the growth in A**T * x = b  or  A**H * x = b. */
 | 
						|
 | 
						|
	if (upper) {
 | 
						|
	    jfirst = 1;
 | 
						|
	    jlast = *n;
 | 
						|
	    jinc = 1;
 | 
						|
	} else {
 | 
						|
	    jfirst = *n;
 | 
						|
	    jlast = 1;
 | 
						|
	    jinc = -1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tscal != 1.f) {
 | 
						|
	    grow = 0.f;
 | 
						|
	    goto L90;
 | 
						|
	}
 | 
						|
 | 
						|
	if (nounit) {
 | 
						|
 | 
						|
/*           A is non-unit triangular. */
 | 
						|
 | 
						|
/*           Compute GROW = 1/G(j) and XBND = 1/M(j). */
 | 
						|
/*           Initially, M(0) = f2cmax{x(i), i=1,...,n}. */
 | 
						|
 | 
						|
	    grow = .5f / f2cmax(xbnd,smlnum);
 | 
						|
	    xbnd = grow;
 | 
						|
	    i__1 = jlast;
 | 
						|
	    i__2 = jinc;
 | 
						|
	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | 
						|
 | 
						|
/*              Exit the loop if the growth factor is too small. */
 | 
						|
 | 
						|
		if (grow <= smlnum) {
 | 
						|
		    goto L90;
 | 
						|
		}
 | 
						|
 | 
						|
/*              G(j) = f2cmax( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
 | 
						|
 | 
						|
		xj = cnorm[j] + 1.f;
 | 
						|
/* Computing MIN */
 | 
						|
		r__1 = grow, r__2 = xbnd / xj;
 | 
						|
		grow = f2cmin(r__1,r__2);
 | 
						|
 | 
						|
		i__3 = j + j * a_dim1;
 | 
						|
		tjjs.r = a[i__3].r, tjjs.i = a[i__3].i;
 | 
						|
		tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
 | 
						|
			r__2));
 | 
						|
 | 
						|
		if (tjj >= smlnum) {
 | 
						|
 | 
						|
/*                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
 | 
						|
 | 
						|
		    if (xj > tjj) {
 | 
						|
			xbnd *= tjj / xj;
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 M(j) could overflow, set XBND to 0. */
 | 
						|
 | 
						|
		    xbnd = 0.f;
 | 
						|
		}
 | 
						|
/* L70: */
 | 
						|
	    }
 | 
						|
	    grow = f2cmin(grow,xbnd);
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           A is unit triangular. */
 | 
						|
 | 
						|
/*           Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
	    r__1 = 1.f, r__2 = .5f / f2cmax(xbnd,smlnum);
 | 
						|
	    grow = f2cmin(r__1,r__2);
 | 
						|
	    i__2 = jlast;
 | 
						|
	    i__1 = jinc;
 | 
						|
	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 | 
						|
 | 
						|
/*              Exit the loop if the growth factor is too small. */
 | 
						|
 | 
						|
		if (grow <= smlnum) {
 | 
						|
		    goto L90;
 | 
						|
		}
 | 
						|
 | 
						|
/*              G(j) = ( 1 + CNORM(j) )*G(j-1) */
 | 
						|
 | 
						|
		xj = cnorm[j] + 1.f;
 | 
						|
		grow /= xj;
 | 
						|
/* L80: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
L90:
 | 
						|
	;
 | 
						|
    }
 | 
						|
 | 
						|
    if (grow * tscal > smlnum) {
 | 
						|
 | 
						|
/*        Use the Level 2 BLAS solve if the reciprocal of the bound on */
 | 
						|
/*        elements of X is not too small. */
 | 
						|
 | 
						|
	ctrsv_(uplo, trans, diag, n, &a[a_offset], lda, &x[1], &c__1);
 | 
						|
    } else {
 | 
						|
 | 
						|
/*        Use a Level 1 BLAS solve, scaling intermediate results. */
 | 
						|
 | 
						|
	if (xmax > bignum * .5f) {
 | 
						|
 | 
						|
/*           Scale X so that its components are less than or equal to */
 | 
						|
/*           BIGNUM in absolute value. */
 | 
						|
 | 
						|
	    *scale = bignum * .5f / xmax;
 | 
						|
	    csscal_(n, scale, &x[1], &c__1);
 | 
						|
	    xmax = bignum;
 | 
						|
	} else {
 | 
						|
	    xmax *= 2.f;
 | 
						|
	}
 | 
						|
 | 
						|
	if (notran) {
 | 
						|
 | 
						|
/*           Solve A * x = b */
 | 
						|
 | 
						|
	    i__1 = jlast;
 | 
						|
	    i__2 = jinc;
 | 
						|
	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | 
						|
 | 
						|
/*              Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
 | 
						|
 | 
						|
		i__3 = j;
 | 
						|
		xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]), 
 | 
						|
			abs(r__2));
 | 
						|
		if (nounit) {
 | 
						|
		    i__3 = j + j * a_dim1;
 | 
						|
		    q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3].i;
 | 
						|
		    tjjs.r = q__1.r, tjjs.i = q__1.i;
 | 
						|
		} else {
 | 
						|
		    tjjs.r = tscal, tjjs.i = 0.f;
 | 
						|
		    if (tscal == 1.f) {
 | 
						|
			goto L105;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
		tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), abs(
 | 
						|
			r__2));
 | 
						|
		if (tjj > smlnum) {
 | 
						|
 | 
						|
/*                    abs(A(j,j)) > SMLNUM: */
 | 
						|
 | 
						|
		    if (tjj < 1.f) {
 | 
						|
			if (xj > tjj * bignum) {
 | 
						|
 | 
						|
/*                          Scale x by 1/b(j). */
 | 
						|
 | 
						|
			    rec = 1.f / xj;
 | 
						|
			    csscal_(n, &rec, &x[1], &c__1);
 | 
						|
			    *scale *= rec;
 | 
						|
			    xmax *= rec;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		    i__3 = j;
 | 
						|
		    cladiv_(&q__1, &x[j], &tjjs);
 | 
						|
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		    i__3 = j;
 | 
						|
		    xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
 | 
						|
			    , abs(r__2));
 | 
						|
		} else if (tjj > 0.f) {
 | 
						|
 | 
						|
/*                    0 < abs(A(j,j)) <= SMLNUM: */
 | 
						|
 | 
						|
		    if (xj > tjj * bignum) {
 | 
						|
 | 
						|
/*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
 | 
						|
/*                       to avoid overflow when dividing by A(j,j). */
 | 
						|
 | 
						|
			rec = tjj * bignum / xj;
 | 
						|
			if (cnorm[j] > 1.f) {
 | 
						|
 | 
						|
/*                          Scale by 1/CNORM(j) to avoid overflow when */
 | 
						|
/*                          multiplying x(j) times column j. */
 | 
						|
 | 
						|
			    rec /= cnorm[j];
 | 
						|
			}
 | 
						|
			csscal_(n, &rec, &x[1], &c__1);
 | 
						|
			*scale *= rec;
 | 
						|
			xmax *= rec;
 | 
						|
		    }
 | 
						|
		    i__3 = j;
 | 
						|
		    cladiv_(&q__1, &x[j], &tjjs);
 | 
						|
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		    i__3 = j;
 | 
						|
		    xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
 | 
						|
			    , abs(r__2));
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
 | 
						|
/*                    scale = 0, and compute a solution to A*x = 0. */
 | 
						|
 | 
						|
		    i__3 = *n;
 | 
						|
		    for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
			i__4 = i__;
 | 
						|
			x[i__4].r = 0.f, x[i__4].i = 0.f;
 | 
						|
/* L100: */
 | 
						|
		    }
 | 
						|
		    i__3 = j;
 | 
						|
		    x[i__3].r = 1.f, x[i__3].i = 0.f;
 | 
						|
		    xj = 1.f;
 | 
						|
		    *scale = 0.f;
 | 
						|
		    xmax = 0.f;
 | 
						|
		}
 | 
						|
L105:
 | 
						|
 | 
						|
/*              Scale x if necessary to avoid overflow when adding a */
 | 
						|
/*              multiple of column j of A. */
 | 
						|
 | 
						|
		if (xj > 1.f) {
 | 
						|
		    rec = 1.f / xj;
 | 
						|
		    if (cnorm[j] > (bignum - xmax) * rec) {
 | 
						|
 | 
						|
/*                    Scale x by 1/(2*abs(x(j))). */
 | 
						|
 | 
						|
			rec *= .5f;
 | 
						|
			csscal_(n, &rec, &x[1], &c__1);
 | 
						|
			*scale *= rec;
 | 
						|
		    }
 | 
						|
		} else if (xj * cnorm[j] > bignum - xmax) {
 | 
						|
 | 
						|
/*                 Scale x by 1/2. */
 | 
						|
 | 
						|
		    csscal_(n, &c_b36, &x[1], &c__1);
 | 
						|
		    *scale *= .5f;
 | 
						|
		}
 | 
						|
 | 
						|
		if (upper) {
 | 
						|
		    if (j > 1) {
 | 
						|
 | 
						|
/*                    Compute the update */
 | 
						|
/*                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j) */
 | 
						|
 | 
						|
			i__3 = j - 1;
 | 
						|
			i__4 = j;
 | 
						|
			q__2.r = -x[i__4].r, q__2.i = -x[i__4].i;
 | 
						|
			q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
 | 
						|
			caxpy_(&i__3, &q__1, &a[j * a_dim1 + 1], &c__1, &x[1],
 | 
						|
				 &c__1);
 | 
						|
			i__3 = j - 1;
 | 
						|
			i__ = icamax_(&i__3, &x[1], &c__1);
 | 
						|
			i__3 = i__;
 | 
						|
			xmax = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | 
						|
				&x[i__]), abs(r__2));
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    if (j < *n) {
 | 
						|
 | 
						|
/*                    Compute the update */
 | 
						|
/*                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j) */
 | 
						|
 | 
						|
			i__3 = *n - j;
 | 
						|
			i__4 = j;
 | 
						|
			q__2.r = -x[i__4].r, q__2.i = -x[i__4].i;
 | 
						|
			q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
 | 
						|
			caxpy_(&i__3, &q__1, &a[j + 1 + j * a_dim1], &c__1, &
 | 
						|
				x[j + 1], &c__1);
 | 
						|
			i__3 = *n - j;
 | 
						|
			i__ = j + icamax_(&i__3, &x[j + 1], &c__1);
 | 
						|
			i__3 = i__;
 | 
						|
			xmax = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(
 | 
						|
				&x[i__]), abs(r__2));
 | 
						|
		    }
 | 
						|
		}
 | 
						|
/* L110: */
 | 
						|
	    }
 | 
						|
 | 
						|
	} else if (lsame_(trans, "T")) {
 | 
						|
 | 
						|
/*           Solve A**T * x = b */
 | 
						|
 | 
						|
	    i__2 = jlast;
 | 
						|
	    i__1 = jinc;
 | 
						|
	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 | 
						|
 | 
						|
/*              Compute x(j) = b(j) - sum A(k,j)*x(k). */
 | 
						|
/*                                    k<>j */
 | 
						|
 | 
						|
		i__3 = j;
 | 
						|
		xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]), 
 | 
						|
			abs(r__2));
 | 
						|
		uscal.r = tscal, uscal.i = 0.f;
 | 
						|
		rec = 1.f / f2cmax(xmax,1.f);
 | 
						|
		if (cnorm[j] > (bignum - xj) * rec) {
 | 
						|
 | 
						|
/*                 If x(j) could overflow, scale x by 1/(2*XMAX). */
 | 
						|
 | 
						|
		    rec *= .5f;
 | 
						|
		    if (nounit) {
 | 
						|
			i__3 = j + j * a_dim1;
 | 
						|
			q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3]
 | 
						|
				.i;
 | 
						|
			tjjs.r = q__1.r, tjjs.i = q__1.i;
 | 
						|
		    } else {
 | 
						|
			tjjs.r = tscal, tjjs.i = 0.f;
 | 
						|
		    }
 | 
						|
		    tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), 
 | 
						|
			    abs(r__2));
 | 
						|
		    if (tjj > 1.f) {
 | 
						|
 | 
						|
/*                       Divide by A(j,j) when scaling x if A(j,j) > 1. */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
			r__1 = 1.f, r__2 = rec * tjj;
 | 
						|
			rec = f2cmin(r__1,r__2);
 | 
						|
			cladiv_(&q__1, &uscal, &tjjs);
 | 
						|
			uscal.r = q__1.r, uscal.i = q__1.i;
 | 
						|
		    }
 | 
						|
		    if (rec < 1.f) {
 | 
						|
			csscal_(n, &rec, &x[1], &c__1);
 | 
						|
			*scale *= rec;
 | 
						|
			xmax *= rec;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
		csumj.r = 0.f, csumj.i = 0.f;
 | 
						|
		if (uscal.r == 1.f && uscal.i == 0.f) {
 | 
						|
 | 
						|
/*                 If the scaling needed for A in the dot product is 1, */
 | 
						|
/*                 call CDOTU to perform the dot product. */
 | 
						|
 | 
						|
		    if (upper) {
 | 
						|
			i__3 = j - 1;
 | 
						|
			cdotu_(&q__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
 | 
						|
				 &c__1);
 | 
						|
			csumj.r = q__1.r, csumj.i = q__1.i;
 | 
						|
		    } else if (j < *n) {
 | 
						|
			i__3 = *n - j;
 | 
						|
			cdotu_(&q__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, &
 | 
						|
				x[j + 1], &c__1);
 | 
						|
			csumj.r = q__1.r, csumj.i = q__1.i;
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 Otherwise, use in-line code for the dot product. */
 | 
						|
 | 
						|
		    if (upper) {
 | 
						|
			i__3 = j - 1;
 | 
						|
			for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
			    i__4 = i__ + j * a_dim1;
 | 
						|
			    q__3.r = a[i__4].r * uscal.r - a[i__4].i * 
 | 
						|
				    uscal.i, q__3.i = a[i__4].r * uscal.i + a[
 | 
						|
				    i__4].i * uscal.r;
 | 
						|
			    i__5 = i__;
 | 
						|
			    q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i, 
 | 
						|
				    q__2.i = q__3.r * x[i__5].i + q__3.i * x[
 | 
						|
				    i__5].r;
 | 
						|
			    q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + 
 | 
						|
				    q__2.i;
 | 
						|
			    csumj.r = q__1.r, csumj.i = q__1.i;
 | 
						|
/* L120: */
 | 
						|
			}
 | 
						|
		    } else if (j < *n) {
 | 
						|
			i__3 = *n;
 | 
						|
			for (i__ = j + 1; i__ <= i__3; ++i__) {
 | 
						|
			    i__4 = i__ + j * a_dim1;
 | 
						|
			    q__3.r = a[i__4].r * uscal.r - a[i__4].i * 
 | 
						|
				    uscal.i, q__3.i = a[i__4].r * uscal.i + a[
 | 
						|
				    i__4].i * uscal.r;
 | 
						|
			    i__5 = i__;
 | 
						|
			    q__2.r = q__3.r * x[i__5].r - q__3.i * x[i__5].i, 
 | 
						|
				    q__2.i = q__3.r * x[i__5].i + q__3.i * x[
 | 
						|
				    i__5].r;
 | 
						|
			    q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + 
 | 
						|
				    q__2.i;
 | 
						|
			    csumj.r = q__1.r, csumj.i = q__1.i;
 | 
						|
/* L130: */
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
		q__1.r = tscal, q__1.i = 0.f;
 | 
						|
		if (uscal.r == q__1.r && uscal.i == q__1.i) {
 | 
						|
 | 
						|
/*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
 | 
						|
/*                 was not used to scale the dotproduct. */
 | 
						|
 | 
						|
		    i__3 = j;
 | 
						|
		    i__4 = j;
 | 
						|
		    q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i - 
 | 
						|
			    csumj.i;
 | 
						|
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		    i__3 = j;
 | 
						|
		    xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
 | 
						|
			    , abs(r__2));
 | 
						|
		    if (nounit) {
 | 
						|
			i__3 = j + j * a_dim1;
 | 
						|
			q__1.r = tscal * a[i__3].r, q__1.i = tscal * a[i__3]
 | 
						|
				.i;
 | 
						|
			tjjs.r = q__1.r, tjjs.i = q__1.i;
 | 
						|
		    } else {
 | 
						|
			tjjs.r = tscal, tjjs.i = 0.f;
 | 
						|
			if (tscal == 1.f) {
 | 
						|
			    goto L145;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
 | 
						|
/*                    Compute x(j) = x(j) / A(j,j), scaling if necessary. */
 | 
						|
 | 
						|
		    tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), 
 | 
						|
			    abs(r__2));
 | 
						|
		    if (tjj > smlnum) {
 | 
						|
 | 
						|
/*                       abs(A(j,j)) > SMLNUM: */
 | 
						|
 | 
						|
			if (tjj < 1.f) {
 | 
						|
			    if (xj > tjj * bignum) {
 | 
						|
 | 
						|
/*                             Scale X by 1/abs(x(j)). */
 | 
						|
 | 
						|
				rec = 1.f / xj;
 | 
						|
				csscal_(n, &rec, &x[1], &c__1);
 | 
						|
				*scale *= rec;
 | 
						|
				xmax *= rec;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
			i__3 = j;
 | 
						|
			cladiv_(&q__1, &x[j], &tjjs);
 | 
						|
			x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		    } else if (tjj > 0.f) {
 | 
						|
 | 
						|
/*                       0 < abs(A(j,j)) <= SMLNUM: */
 | 
						|
 | 
						|
			if (xj > tjj * bignum) {
 | 
						|
 | 
						|
/*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
 | 
						|
 | 
						|
			    rec = tjj * bignum / xj;
 | 
						|
			    csscal_(n, &rec, &x[1], &c__1);
 | 
						|
			    *scale *= rec;
 | 
						|
			    xmax *= rec;
 | 
						|
			}
 | 
						|
			i__3 = j;
 | 
						|
			cladiv_(&q__1, &x[j], &tjjs);
 | 
						|
			x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		    } else {
 | 
						|
 | 
						|
/*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
 | 
						|
/*                       scale = 0 and compute a solution to A**T *x = 0. */
 | 
						|
 | 
						|
			i__3 = *n;
 | 
						|
			for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
			    i__4 = i__;
 | 
						|
			    x[i__4].r = 0.f, x[i__4].i = 0.f;
 | 
						|
/* L140: */
 | 
						|
			}
 | 
						|
			i__3 = j;
 | 
						|
			x[i__3].r = 1.f, x[i__3].i = 0.f;
 | 
						|
			*scale = 0.f;
 | 
						|
			xmax = 0.f;
 | 
						|
		    }
 | 
						|
L145:
 | 
						|
		    ;
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
 | 
						|
/*                 product has already been divided by 1/A(j,j). */
 | 
						|
 | 
						|
		    i__3 = j;
 | 
						|
		    cladiv_(&q__2, &x[j], &tjjs);
 | 
						|
		    q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
 | 
						|
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		}
 | 
						|
/* Computing MAX */
 | 
						|
		i__3 = j;
 | 
						|
		r__3 = xmax, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = 
 | 
						|
			r_imag(&x[j]), abs(r__2));
 | 
						|
		xmax = f2cmax(r__3,r__4);
 | 
						|
/* L150: */
 | 
						|
	    }
 | 
						|
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           Solve A**H * x = b */
 | 
						|
 | 
						|
	    i__1 = jlast;
 | 
						|
	    i__2 = jinc;
 | 
						|
	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | 
						|
 | 
						|
/*              Compute x(j) = b(j) - sum A(k,j)*x(k). */
 | 
						|
/*                                    k<>j */
 | 
						|
 | 
						|
		i__3 = j;
 | 
						|
		xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j]), 
 | 
						|
			abs(r__2));
 | 
						|
		uscal.r = tscal, uscal.i = 0.f;
 | 
						|
		rec = 1.f / f2cmax(xmax,1.f);
 | 
						|
		if (cnorm[j] > (bignum - xj) * rec) {
 | 
						|
 | 
						|
/*                 If x(j) could overflow, scale x by 1/(2*XMAX). */
 | 
						|
 | 
						|
		    rec *= .5f;
 | 
						|
		    if (nounit) {
 | 
						|
			r_cnjg(&q__2, &a[j + j * a_dim1]);
 | 
						|
			q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
 | 
						|
			tjjs.r = q__1.r, tjjs.i = q__1.i;
 | 
						|
		    } else {
 | 
						|
			tjjs.r = tscal, tjjs.i = 0.f;
 | 
						|
		    }
 | 
						|
		    tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), 
 | 
						|
			    abs(r__2));
 | 
						|
		    if (tjj > 1.f) {
 | 
						|
 | 
						|
/*                       Divide by A(j,j) when scaling x if A(j,j) > 1. */
 | 
						|
 | 
						|
/* Computing MIN */
 | 
						|
			r__1 = 1.f, r__2 = rec * tjj;
 | 
						|
			rec = f2cmin(r__1,r__2);
 | 
						|
			cladiv_(&q__1, &uscal, &tjjs);
 | 
						|
			uscal.r = q__1.r, uscal.i = q__1.i;
 | 
						|
		    }
 | 
						|
		    if (rec < 1.f) {
 | 
						|
			csscal_(n, &rec, &x[1], &c__1);
 | 
						|
			*scale *= rec;
 | 
						|
			xmax *= rec;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
		csumj.r = 0.f, csumj.i = 0.f;
 | 
						|
		if (uscal.r == 1.f && uscal.i == 0.f) {
 | 
						|
 | 
						|
/*                 If the scaling needed for A in the dot product is 1, */
 | 
						|
/*                 call CDOTC to perform the dot product. */
 | 
						|
 | 
						|
		    if (upper) {
 | 
						|
			i__3 = j - 1;
 | 
						|
			cdotc_(&q__1, &i__3, &a[j * a_dim1 + 1], &c__1, &x[1],
 | 
						|
				 &c__1);
 | 
						|
			csumj.r = q__1.r, csumj.i = q__1.i;
 | 
						|
		    } else if (j < *n) {
 | 
						|
			i__3 = *n - j;
 | 
						|
			cdotc_(&q__1, &i__3, &a[j + 1 + j * a_dim1], &c__1, &
 | 
						|
				x[j + 1], &c__1);
 | 
						|
			csumj.r = q__1.r, csumj.i = q__1.i;
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 Otherwise, use in-line code for the dot product. */
 | 
						|
 | 
						|
		    if (upper) {
 | 
						|
			i__3 = j - 1;
 | 
						|
			for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
			    r_cnjg(&q__4, &a[i__ + j * a_dim1]);
 | 
						|
			    q__3.r = q__4.r * uscal.r - q__4.i * uscal.i, 
 | 
						|
				    q__3.i = q__4.r * uscal.i + q__4.i * 
 | 
						|
				    uscal.r;
 | 
						|
			    i__4 = i__;
 | 
						|
			    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, 
 | 
						|
				    q__2.i = q__3.r * x[i__4].i + q__3.i * x[
 | 
						|
				    i__4].r;
 | 
						|
			    q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + 
 | 
						|
				    q__2.i;
 | 
						|
			    csumj.r = q__1.r, csumj.i = q__1.i;
 | 
						|
/* L160: */
 | 
						|
			}
 | 
						|
		    } else if (j < *n) {
 | 
						|
			i__3 = *n;
 | 
						|
			for (i__ = j + 1; i__ <= i__3; ++i__) {
 | 
						|
			    r_cnjg(&q__4, &a[i__ + j * a_dim1]);
 | 
						|
			    q__3.r = q__4.r * uscal.r - q__4.i * uscal.i, 
 | 
						|
				    q__3.i = q__4.r * uscal.i + q__4.i * 
 | 
						|
				    uscal.r;
 | 
						|
			    i__4 = i__;
 | 
						|
			    q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, 
 | 
						|
				    q__2.i = q__3.r * x[i__4].i + q__3.i * x[
 | 
						|
				    i__4].r;
 | 
						|
			    q__1.r = csumj.r + q__2.r, q__1.i = csumj.i + 
 | 
						|
				    q__2.i;
 | 
						|
			    csumj.r = q__1.r, csumj.i = q__1.i;
 | 
						|
/* L170: */
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
		q__1.r = tscal, q__1.i = 0.f;
 | 
						|
		if (uscal.r == q__1.r && uscal.i == q__1.i) {
 | 
						|
 | 
						|
/*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j) */
 | 
						|
/*                 was not used to scale the dotproduct. */
 | 
						|
 | 
						|
		    i__3 = j;
 | 
						|
		    i__4 = j;
 | 
						|
		    q__1.r = x[i__4].r - csumj.r, q__1.i = x[i__4].i - 
 | 
						|
			    csumj.i;
 | 
						|
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		    i__3 = j;
 | 
						|
		    xj = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = r_imag(&x[j])
 | 
						|
			    , abs(r__2));
 | 
						|
		    if (nounit) {
 | 
						|
			r_cnjg(&q__2, &a[j + j * a_dim1]);
 | 
						|
			q__1.r = tscal * q__2.r, q__1.i = tscal * q__2.i;
 | 
						|
			tjjs.r = q__1.r, tjjs.i = q__1.i;
 | 
						|
		    } else {
 | 
						|
			tjjs.r = tscal, tjjs.i = 0.f;
 | 
						|
			if (tscal == 1.f) {
 | 
						|
			    goto L185;
 | 
						|
			}
 | 
						|
		    }
 | 
						|
 | 
						|
/*                    Compute x(j) = x(j) / A(j,j), scaling if necessary. */
 | 
						|
 | 
						|
		    tjj = (r__1 = tjjs.r, abs(r__1)) + (r__2 = r_imag(&tjjs), 
 | 
						|
			    abs(r__2));
 | 
						|
		    if (tjj > smlnum) {
 | 
						|
 | 
						|
/*                       abs(A(j,j)) > SMLNUM: */
 | 
						|
 | 
						|
			if (tjj < 1.f) {
 | 
						|
			    if (xj > tjj * bignum) {
 | 
						|
 | 
						|
/*                             Scale X by 1/abs(x(j)). */
 | 
						|
 | 
						|
				rec = 1.f / xj;
 | 
						|
				csscal_(n, &rec, &x[1], &c__1);
 | 
						|
				*scale *= rec;
 | 
						|
				xmax *= rec;
 | 
						|
			    }
 | 
						|
			}
 | 
						|
			i__3 = j;
 | 
						|
			cladiv_(&q__1, &x[j], &tjjs);
 | 
						|
			x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		    } else if (tjj > 0.f) {
 | 
						|
 | 
						|
/*                       0 < abs(A(j,j)) <= SMLNUM: */
 | 
						|
 | 
						|
			if (xj > tjj * bignum) {
 | 
						|
 | 
						|
/*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
 | 
						|
 | 
						|
			    rec = tjj * bignum / xj;
 | 
						|
			    csscal_(n, &rec, &x[1], &c__1);
 | 
						|
			    *scale *= rec;
 | 
						|
			    xmax *= rec;
 | 
						|
			}
 | 
						|
			i__3 = j;
 | 
						|
			cladiv_(&q__1, &x[j], &tjjs);
 | 
						|
			x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		    } else {
 | 
						|
 | 
						|
/*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
 | 
						|
/*                       scale = 0 and compute a solution to A**H *x = 0. */
 | 
						|
 | 
						|
			i__3 = *n;
 | 
						|
			for (i__ = 1; i__ <= i__3; ++i__) {
 | 
						|
			    i__4 = i__;
 | 
						|
			    x[i__4].r = 0.f, x[i__4].i = 0.f;
 | 
						|
/* L180: */
 | 
						|
			}
 | 
						|
			i__3 = j;
 | 
						|
			x[i__3].r = 1.f, x[i__3].i = 0.f;
 | 
						|
			*scale = 0.f;
 | 
						|
			xmax = 0.f;
 | 
						|
		    }
 | 
						|
L185:
 | 
						|
		    ;
 | 
						|
		} else {
 | 
						|
 | 
						|
/*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot */
 | 
						|
/*                 product has already been divided by 1/A(j,j). */
 | 
						|
 | 
						|
		    i__3 = j;
 | 
						|
		    cladiv_(&q__2, &x[j], &tjjs);
 | 
						|
		    q__1.r = q__2.r - csumj.r, q__1.i = q__2.i - csumj.i;
 | 
						|
		    x[i__3].r = q__1.r, x[i__3].i = q__1.i;
 | 
						|
		}
 | 
						|
/* Computing MAX */
 | 
						|
		i__3 = j;
 | 
						|
		r__3 = xmax, r__4 = (r__1 = x[i__3].r, abs(r__1)) + (r__2 = 
 | 
						|
			r_imag(&x[j]), abs(r__2));
 | 
						|
		xmax = f2cmax(r__3,r__4);
 | 
						|
/* L190: */
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	*scale /= tscal;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Scale the column norms by 1/TSCAL for return. */
 | 
						|
 | 
						|
    if (tscal != 1.f) {
 | 
						|
	r__1 = 1.f / tscal;
 | 
						|
	sscal_(n, &r__1, &cnorm[1], &c__1);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of CLATRS */
 | 
						|
 | 
						|
} /* clatrs_ */
 | 
						|
 |