878 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			878 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* > \brief \b CLARGV generates a vector of plane rotations with real cosines and complex sines. */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CLARGV + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clargv.
 | 
						|
f"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clargv.
 | 
						|
f"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clargv.
 | 
						|
f"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC ) */
 | 
						|
 | 
						|
/*       INTEGER            INCC, INCX, INCY, N */
 | 
						|
/*       REAL               C( * ) */
 | 
						|
/*       COMPLEX            X( * ), Y( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CLARGV generates a vector of complex plane rotations with real */
 | 
						|
/* > cosines, determined by elements of the complex vectors x and y. */
 | 
						|
/* > For i = 1,2,...,n */
 | 
						|
/* > */
 | 
						|
/* >    (        c(i)   s(i) ) ( x(i) ) = ( r(i) ) */
 | 
						|
/* >    ( -conjg(s(i))  c(i) ) ( y(i) ) = (   0  ) */
 | 
						|
/* > */
 | 
						|
/* >    where c(i)**2 + ABS(s(i))**2 = 1 */
 | 
						|
/* > */
 | 
						|
/* > The following conventions are used (these are the same as in CLARTG, */
 | 
						|
/* > but differ from the BLAS1 routine CROTG): */
 | 
						|
/* >    If y(i)=0, then c(i)=1 and s(i)=0. */
 | 
						|
/* >    If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The number of plane rotations to be generated. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] X */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          X is COMPLEX array, dimension (1+(N-1)*INCX) */
 | 
						|
/* >          On entry, the vector x. */
 | 
						|
/* >          On exit, x(i) is overwritten by r(i), for i = 1,...,n. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] INCX */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INCX is INTEGER */
 | 
						|
/* >          The increment between elements of X. INCX > 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] Y */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          Y is COMPLEX array, dimension (1+(N-1)*INCY) */
 | 
						|
/* >          On entry, the vector y. */
 | 
						|
/* >          On exit, the sines of the plane rotations. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] INCY */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INCY is INTEGER */
 | 
						|
/* >          The increment between elements of Y. INCY > 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] C */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          C is REAL array, dimension (1+(N-1)*INCC) */
 | 
						|
/* >          The cosines of the plane rotations. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] INCC */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INCC is INTEGER */
 | 
						|
/* >          The increment between elements of C. INCC > 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date December 2016 */
 | 
						|
 | 
						|
/* > \ingroup complexOTHERauxiliary */
 | 
						|
 | 
						|
/* > \par Further Details: */
 | 
						|
/*  ===================== */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* >  6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel */
 | 
						|
/* > */
 | 
						|
/* >  This version has a few statements commented out for thread safety */
 | 
						|
/* >  (machine parameters are computed on each entry). 10 feb 03, SJH. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void clargv_(integer *n, complex *x, integer *incx, complex *
 | 
						|
	y, integer *incy, real *c__, integer *incc)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer i__1, i__2;
 | 
						|
    real r__1, r__2, r__3, r__4, r__5, r__6, r__7, r__8, r__9, r__10;
 | 
						|
    complex q__1, q__2, q__3;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real d__;
 | 
						|
    complex f, g;
 | 
						|
    integer i__, j;
 | 
						|
    complex r__;
 | 
						|
    real scale;
 | 
						|
    integer count;
 | 
						|
    real f2, g2, safmn2, safmx2;
 | 
						|
    extern real slapy2_(real *, real *);
 | 
						|
    integer ic;
 | 
						|
    real di;
 | 
						|
    complex ff;
 | 
						|
    real cs, dr;
 | 
						|
    complex fs, gs;
 | 
						|
    integer ix, iy;
 | 
						|
    complex sn;
 | 
						|
    extern real slamch_(char *);
 | 
						|
    real safmin, f2s, g2s, eps;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     December 2016 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
/*     LOGICAL            FIRST */
 | 
						|
/*     SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2 */
 | 
						|
/*     DATA               FIRST / .TRUE. / */
 | 
						|
 | 
						|
/*     IF( FIRST ) THEN */
 | 
						|
/*        FIRST = .FALSE. */
 | 
						|
    /* Parameter adjustments */
 | 
						|
    --c__;
 | 
						|
    --y;
 | 
						|
    --x;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    safmin = slamch_("S");
 | 
						|
    eps = slamch_("E");
 | 
						|
    r__1 = slamch_("B");
 | 
						|
    i__1 = (integer) (log(safmin / eps) / log(slamch_("B")) / 2.f);
 | 
						|
    safmn2 = pow_ri(&r__1, &i__1);
 | 
						|
    safmx2 = 1.f / safmn2;
 | 
						|
/*     END IF */
 | 
						|
    ix = 1;
 | 
						|
    iy = 1;
 | 
						|
    ic = 1;
 | 
						|
    i__1 = *n;
 | 
						|
    for (i__ = 1; i__ <= i__1; ++i__) {
 | 
						|
	i__2 = ix;
 | 
						|
	f.r = x[i__2].r, f.i = x[i__2].i;
 | 
						|
	i__2 = iy;
 | 
						|
	g.r = y[i__2].r, g.i = y[i__2].i;
 | 
						|
 | 
						|
/*        Use identical algorithm as in CLARTG */
 | 
						|
 | 
						|
/* Computing MAX */
 | 
						|
/* Computing MAX */
 | 
						|
	r__7 = (r__1 = f.r, abs(r__1)), r__8 = (r__2 = r_imag(&f), abs(r__2));
 | 
						|
/* Computing MAX */
 | 
						|
	r__9 = (r__3 = g.r, abs(r__3)), r__10 = (r__4 = r_imag(&g), abs(r__4))
 | 
						|
		;
 | 
						|
	r__5 = f2cmax(r__7,r__8), r__6 = f2cmax(r__9,r__10);
 | 
						|
	scale = f2cmax(r__5,r__6);
 | 
						|
	fs.r = f.r, fs.i = f.i;
 | 
						|
	gs.r = g.r, gs.i = g.i;
 | 
						|
	count = 0;
 | 
						|
	if (scale >= safmx2) {
 | 
						|
L10:
 | 
						|
	    ++count;
 | 
						|
	    q__1.r = safmn2 * fs.r, q__1.i = safmn2 * fs.i;
 | 
						|
	    fs.r = q__1.r, fs.i = q__1.i;
 | 
						|
	    q__1.r = safmn2 * gs.r, q__1.i = safmn2 * gs.i;
 | 
						|
	    gs.r = q__1.r, gs.i = q__1.i;
 | 
						|
	    scale *= safmn2;
 | 
						|
	    if (scale >= safmx2 && count < 20) {
 | 
						|
		goto L10;
 | 
						|
	    }
 | 
						|
	} else if (scale <= safmn2) {
 | 
						|
	    if (g.r == 0.f && g.i == 0.f) {
 | 
						|
		cs = 1.f;
 | 
						|
		sn.r = 0.f, sn.i = 0.f;
 | 
						|
		r__.r = f.r, r__.i = f.i;
 | 
						|
		goto L50;
 | 
						|
	    }
 | 
						|
L20:
 | 
						|
	    --count;
 | 
						|
	    q__1.r = safmx2 * fs.r, q__1.i = safmx2 * fs.i;
 | 
						|
	    fs.r = q__1.r, fs.i = q__1.i;
 | 
						|
	    q__1.r = safmx2 * gs.r, q__1.i = safmx2 * gs.i;
 | 
						|
	    gs.r = q__1.r, gs.i = q__1.i;
 | 
						|
	    scale *= safmx2;
 | 
						|
	    if (scale <= safmn2) {
 | 
						|
		goto L20;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
/* Computing 2nd power */
 | 
						|
	r__1 = fs.r;
 | 
						|
/* Computing 2nd power */
 | 
						|
	r__2 = r_imag(&fs);
 | 
						|
	f2 = r__1 * r__1 + r__2 * r__2;
 | 
						|
/* Computing 2nd power */
 | 
						|
	r__1 = gs.r;
 | 
						|
/* Computing 2nd power */
 | 
						|
	r__2 = r_imag(&gs);
 | 
						|
	g2 = r__1 * r__1 + r__2 * r__2;
 | 
						|
	if (f2 <= f2cmax(g2,1.f) * safmin) {
 | 
						|
 | 
						|
/*           This is a rare case: F is very small. */
 | 
						|
 | 
						|
	    if (f.r == 0.f && f.i == 0.f) {
 | 
						|
		cs = 0.f;
 | 
						|
		r__2 = g.r;
 | 
						|
		r__3 = r_imag(&g);
 | 
						|
		r__1 = slapy2_(&r__2, &r__3);
 | 
						|
		r__.r = r__1, r__.i = 0.f;
 | 
						|
/*              Do complex/real division explicitly with two real */
 | 
						|
/*              divisions */
 | 
						|
		r__1 = gs.r;
 | 
						|
		r__2 = r_imag(&gs);
 | 
						|
		d__ = slapy2_(&r__1, &r__2);
 | 
						|
		r__1 = gs.r / d__;
 | 
						|
		r__2 = -r_imag(&gs) / d__;
 | 
						|
		q__1.r = r__1, q__1.i = r__2;
 | 
						|
		sn.r = q__1.r, sn.i = q__1.i;
 | 
						|
		goto L50;
 | 
						|
	    }
 | 
						|
	    r__1 = fs.r;
 | 
						|
	    r__2 = r_imag(&fs);
 | 
						|
	    f2s = slapy2_(&r__1, &r__2);
 | 
						|
/*           G2 and G2S are accurate */
 | 
						|
/*           G2 is at least SAFMIN, and G2S is at least SAFMN2 */
 | 
						|
	    g2s = sqrt(g2);
 | 
						|
/*           Error in CS from underflow in F2S is at most */
 | 
						|
/*           UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS */
 | 
						|
/*           If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, */
 | 
						|
/*           and so CS .lt. sqrt(SAFMIN) */
 | 
						|
/*           If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN */
 | 
						|
/*           and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) */
 | 
						|
/*           Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S */
 | 
						|
	    cs = f2s / g2s;
 | 
						|
/*           Make sure abs(FF) = 1 */
 | 
						|
/*           Do complex/real division explicitly with 2 real divisions */
 | 
						|
/* Computing MAX */
 | 
						|
	    r__3 = (r__1 = f.r, abs(r__1)), r__4 = (r__2 = r_imag(&f), abs(
 | 
						|
		    r__2));
 | 
						|
	    if (f2cmax(r__3,r__4) > 1.f) {
 | 
						|
		r__1 = f.r;
 | 
						|
		r__2 = r_imag(&f);
 | 
						|
		d__ = slapy2_(&r__1, &r__2);
 | 
						|
		r__1 = f.r / d__;
 | 
						|
		r__2 = r_imag(&f) / d__;
 | 
						|
		q__1.r = r__1, q__1.i = r__2;
 | 
						|
		ff.r = q__1.r, ff.i = q__1.i;
 | 
						|
	    } else {
 | 
						|
		dr = safmx2 * f.r;
 | 
						|
		di = safmx2 * r_imag(&f);
 | 
						|
		d__ = slapy2_(&dr, &di);
 | 
						|
		r__1 = dr / d__;
 | 
						|
		r__2 = di / d__;
 | 
						|
		q__1.r = r__1, q__1.i = r__2;
 | 
						|
		ff.r = q__1.r, ff.i = q__1.i;
 | 
						|
	    }
 | 
						|
	    r__1 = gs.r / g2s;
 | 
						|
	    r__2 = -r_imag(&gs) / g2s;
 | 
						|
	    q__2.r = r__1, q__2.i = r__2;
 | 
						|
	    q__1.r = ff.r * q__2.r - ff.i * q__2.i, q__1.i = ff.r * q__2.i + 
 | 
						|
		    ff.i * q__2.r;
 | 
						|
	    sn.r = q__1.r, sn.i = q__1.i;
 | 
						|
	    q__2.r = cs * f.r, q__2.i = cs * f.i;
 | 
						|
	    q__3.r = sn.r * g.r - sn.i * g.i, q__3.i = sn.r * g.i + sn.i * 
 | 
						|
		    g.r;
 | 
						|
	    q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
 | 
						|
	    r__.r = q__1.r, r__.i = q__1.i;
 | 
						|
	} else {
 | 
						|
 | 
						|
/*           This is the most common case. */
 | 
						|
/*           Neither F2 nor F2/G2 are less than SAFMIN */
 | 
						|
/*           F2S cannot overflow, and it is accurate */
 | 
						|
 | 
						|
	    f2s = sqrt(g2 / f2 + 1.f);
 | 
						|
/*           Do the F2S(real)*FS(complex) multiply with two real */
 | 
						|
/*           multiplies */
 | 
						|
	    r__1 = f2s * fs.r;
 | 
						|
	    r__2 = f2s * r_imag(&fs);
 | 
						|
	    q__1.r = r__1, q__1.i = r__2;
 | 
						|
	    r__.r = q__1.r, r__.i = q__1.i;
 | 
						|
	    cs = 1.f / f2s;
 | 
						|
	    d__ = f2 + g2;
 | 
						|
/*           Do complex/real division explicitly with two real divisions */
 | 
						|
	    r__1 = r__.r / d__;
 | 
						|
	    r__2 = r_imag(&r__) / d__;
 | 
						|
	    q__1.r = r__1, q__1.i = r__2;
 | 
						|
	    sn.r = q__1.r, sn.i = q__1.i;
 | 
						|
	    r_cnjg(&q__2, &gs);
 | 
						|
	    q__1.r = sn.r * q__2.r - sn.i * q__2.i, q__1.i = sn.r * q__2.i + 
 | 
						|
		    sn.i * q__2.r;
 | 
						|
	    sn.r = q__1.r, sn.i = q__1.i;
 | 
						|
	    if (count != 0) {
 | 
						|
		if (count > 0) {
 | 
						|
		    i__2 = count;
 | 
						|
		    for (j = 1; j <= i__2; ++j) {
 | 
						|
			q__1.r = safmx2 * r__.r, q__1.i = safmx2 * r__.i;
 | 
						|
			r__.r = q__1.r, r__.i = q__1.i;
 | 
						|
/* L30: */
 | 
						|
		    }
 | 
						|
		} else {
 | 
						|
		    i__2 = -count;
 | 
						|
		    for (j = 1; j <= i__2; ++j) {
 | 
						|
			q__1.r = safmn2 * r__.r, q__1.i = safmn2 * r__.i;
 | 
						|
			r__.r = q__1.r, r__.i = q__1.i;
 | 
						|
/* L40: */
 | 
						|
		    }
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
L50:
 | 
						|
	c__[ic] = cs;
 | 
						|
	i__2 = iy;
 | 
						|
	y[i__2].r = sn.r, y[i__2].i = sn.i;
 | 
						|
	i__2 = ix;
 | 
						|
	x[i__2].r = r__.r, x[i__2].i = r__.i;
 | 
						|
	ic += *incc;
 | 
						|
	iy += *incy;
 | 
						|
	ix += *incx;
 | 
						|
/* L60: */
 | 
						|
    }
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of CLARGV */
 | 
						|
 | 
						|
} /* clargv_ */
 | 
						|
 |