1173 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1173 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <complex.h>
 | 
						|
#ifdef complex
 | 
						|
#undef complex
 | 
						|
#endif
 | 
						|
#ifdef I
 | 
						|
#undef I
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_WIN64)
 | 
						|
typedef long long BLASLONG;
 | 
						|
typedef unsigned long long BLASULONG;
 | 
						|
#else
 | 
						|
typedef long BLASLONG;
 | 
						|
typedef unsigned long BLASULONG;
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LAPACK_ILP64
 | 
						|
typedef BLASLONG blasint;
 | 
						|
#if defined(_WIN64)
 | 
						|
#define blasabs(x) llabs(x)
 | 
						|
#else
 | 
						|
#define blasabs(x) labs(x)
 | 
						|
#endif
 | 
						|
#else
 | 
						|
typedef int blasint;
 | 
						|
#define blasabs(x) abs(x)
 | 
						|
#endif
 | 
						|
 | 
						|
typedef blasint integer;
 | 
						|
 | 
						|
typedef unsigned int uinteger;
 | 
						|
typedef char *address;
 | 
						|
typedef short int shortint;
 | 
						|
typedef float real;
 | 
						|
typedef double doublereal;
 | 
						|
typedef struct { real r, i; } complex;
 | 
						|
typedef struct { doublereal r, i; } doublecomplex;
 | 
						|
#ifdef _MSC_VER
 | 
						|
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | 
						|
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | 
						|
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | 
						|
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | 
						|
#else
 | 
						|
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | 
						|
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | 
						|
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | 
						|
#endif
 | 
						|
#define pCf(z) (*_pCf(z))
 | 
						|
#define pCd(z) (*_pCd(z))
 | 
						|
typedef blasint logical;
 | 
						|
 | 
						|
typedef char logical1;
 | 
						|
typedef char integer1;
 | 
						|
 | 
						|
#define TRUE_ (1)
 | 
						|
#define FALSE_ (0)
 | 
						|
 | 
						|
/* Extern is for use with -E */
 | 
						|
#ifndef Extern
 | 
						|
#define Extern extern
 | 
						|
#endif
 | 
						|
 | 
						|
/* I/O stuff */
 | 
						|
 | 
						|
typedef int flag;
 | 
						|
typedef int ftnlen;
 | 
						|
typedef int ftnint;
 | 
						|
 | 
						|
/*external read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag cierr;
 | 
						|
	ftnint ciunit;
 | 
						|
	flag ciend;
 | 
						|
	char *cifmt;
 | 
						|
	ftnint cirec;
 | 
						|
} cilist;
 | 
						|
 | 
						|
/*internal read, write*/
 | 
						|
typedef struct
 | 
						|
{	flag icierr;
 | 
						|
	char *iciunit;
 | 
						|
	flag iciend;
 | 
						|
	char *icifmt;
 | 
						|
	ftnint icirlen;
 | 
						|
	ftnint icirnum;
 | 
						|
} icilist;
 | 
						|
 | 
						|
/*open*/
 | 
						|
typedef struct
 | 
						|
{	flag oerr;
 | 
						|
	ftnint ounit;
 | 
						|
	char *ofnm;
 | 
						|
	ftnlen ofnmlen;
 | 
						|
	char *osta;
 | 
						|
	char *oacc;
 | 
						|
	char *ofm;
 | 
						|
	ftnint orl;
 | 
						|
	char *oblnk;
 | 
						|
} olist;
 | 
						|
 | 
						|
/*close*/
 | 
						|
typedef struct
 | 
						|
{	flag cerr;
 | 
						|
	ftnint cunit;
 | 
						|
	char *csta;
 | 
						|
} cllist;
 | 
						|
 | 
						|
/*rewind, backspace, endfile*/
 | 
						|
typedef struct
 | 
						|
{	flag aerr;
 | 
						|
	ftnint aunit;
 | 
						|
} alist;
 | 
						|
 | 
						|
/* inquire */
 | 
						|
typedef struct
 | 
						|
{	flag inerr;
 | 
						|
	ftnint inunit;
 | 
						|
	char *infile;
 | 
						|
	ftnlen infilen;
 | 
						|
	ftnint	*inex;	/*parameters in standard's order*/
 | 
						|
	ftnint	*inopen;
 | 
						|
	ftnint	*innum;
 | 
						|
	ftnint	*innamed;
 | 
						|
	char	*inname;
 | 
						|
	ftnlen	innamlen;
 | 
						|
	char	*inacc;
 | 
						|
	ftnlen	inacclen;
 | 
						|
	char	*inseq;
 | 
						|
	ftnlen	inseqlen;
 | 
						|
	char 	*indir;
 | 
						|
	ftnlen	indirlen;
 | 
						|
	char	*infmt;
 | 
						|
	ftnlen	infmtlen;
 | 
						|
	char	*inform;
 | 
						|
	ftnint	informlen;
 | 
						|
	char	*inunf;
 | 
						|
	ftnlen	inunflen;
 | 
						|
	ftnint	*inrecl;
 | 
						|
	ftnint	*innrec;
 | 
						|
	char	*inblank;
 | 
						|
	ftnlen	inblanklen;
 | 
						|
} inlist;
 | 
						|
 | 
						|
#define VOID void
 | 
						|
 | 
						|
union Multitype {	/* for multiple entry points */
 | 
						|
	integer1 g;
 | 
						|
	shortint h;
 | 
						|
	integer i;
 | 
						|
	/* longint j; */
 | 
						|
	real r;
 | 
						|
	doublereal d;
 | 
						|
	complex c;
 | 
						|
	doublecomplex z;
 | 
						|
	};
 | 
						|
 | 
						|
typedef union Multitype Multitype;
 | 
						|
 | 
						|
struct Vardesc {	/* for Namelist */
 | 
						|
	char *name;
 | 
						|
	char *addr;
 | 
						|
	ftnlen *dims;
 | 
						|
	int  type;
 | 
						|
	};
 | 
						|
typedef struct Vardesc Vardesc;
 | 
						|
 | 
						|
struct Namelist {
 | 
						|
	char *name;
 | 
						|
	Vardesc **vars;
 | 
						|
	int nvars;
 | 
						|
	};
 | 
						|
typedef struct Namelist Namelist;
 | 
						|
 | 
						|
#define abs(x) ((x) >= 0 ? (x) : -(x))
 | 
						|
#define dabs(x) (fabs(x))
 | 
						|
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | 
						|
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | 
						|
#define dmin(a,b) (f2cmin(a,b))
 | 
						|
#define dmax(a,b) (f2cmax(a,b))
 | 
						|
#define bit_test(a,b)	((a) >> (b) & 1)
 | 
						|
#define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | 
						|
#define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | 
						|
 | 
						|
#define abort_() { sig_die("Fortran abort routine called", 1); }
 | 
						|
#define c_abs(z) (cabsf(Cf(z)))
 | 
						|
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | 
						|
#ifdef _MSC_VER
 | 
						|
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | 
						|
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | 
						|
#else
 | 
						|
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | 
						|
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | 
						|
#endif
 | 
						|
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | 
						|
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | 
						|
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | 
						|
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | 
						|
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | 
						|
#define d_abs(x) (fabs(*(x)))
 | 
						|
#define d_acos(x) (acos(*(x)))
 | 
						|
#define d_asin(x) (asin(*(x)))
 | 
						|
#define d_atan(x) (atan(*(x)))
 | 
						|
#define d_atn2(x, y) (atan2(*(x),*(y)))
 | 
						|
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | 
						|
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | 
						|
#define d_cos(x) (cos(*(x)))
 | 
						|
#define d_cosh(x) (cosh(*(x)))
 | 
						|
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | 
						|
#define d_exp(x) (exp(*(x)))
 | 
						|
#define d_imag(z) (cimag(Cd(z)))
 | 
						|
#define r_imag(z) (cimagf(Cf(z)))
 | 
						|
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | 
						|
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | 
						|
#define d_log(x) (log(*(x)))
 | 
						|
#define d_mod(x, y) (fmod(*(x), *(y)))
 | 
						|
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | 
						|
#define d_nint(x) u_nint(*(x))
 | 
						|
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | 
						|
#define d_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define r_sign(a,b) u_sign(*(a),*(b))
 | 
						|
#define d_sin(x) (sin(*(x)))
 | 
						|
#define d_sinh(x) (sinh(*(x)))
 | 
						|
#define d_sqrt(x) (sqrt(*(x)))
 | 
						|
#define d_tan(x) (tan(*(x)))
 | 
						|
#define d_tanh(x) (tanh(*(x)))
 | 
						|
#define i_abs(x) abs(*(x))
 | 
						|
#define i_dnnt(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_len(s, n) (n)
 | 
						|
#define i_nint(x) ((integer)u_nint(*(x)))
 | 
						|
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | 
						|
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | 
						|
#define pow_si(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_ri(B,E) spow_ui(*(B),*(E))
 | 
						|
#define pow_di(B,E) dpow_ui(*(B),*(E))
 | 
						|
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | 
						|
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | 
						|
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | 
						|
#define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | 
						|
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | 
						|
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | 
						|
#define sig_die(s, kill) { exit(1); }
 | 
						|
#define s_stop(s, n) {exit(0);}
 | 
						|
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | 
						|
#define z_abs(z) (cabs(Cd(z)))
 | 
						|
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | 
						|
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | 
						|
#define myexit_() break;
 | 
						|
#define mycycle() continue;
 | 
						|
#define myceiling(w) {ceil(w)}
 | 
						|
#define myhuge(w) {HUGE_VAL}
 | 
						|
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | 
						|
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | 
						|
 | 
						|
/* procedure parameter types for -A and -C++ */
 | 
						|
 | 
						|
 | 
						|
#ifdef __cplusplus
 | 
						|
typedef logical (*L_fp)(...);
 | 
						|
#else
 | 
						|
typedef logical (*L_fp)();
 | 
						|
#endif
 | 
						|
 | 
						|
static float spow_ui(float x, integer n) {
 | 
						|
	float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static double dpow_ui(double x, integer n) {
 | 
						|
	double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Fcomplex cpow_ui(complex x, integer n) {
 | 
						|
	complex pow={1.0,0.0}; unsigned long int u;
 | 
						|
		if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | 
						|
			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Fcomplex p={pow.r, pow.i};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex float cpow_ui(_Complex float x, integer n) {
 | 
						|
	_Complex float pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
#ifdef _MSC_VER
 | 
						|
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | 
						|
	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | 
						|
			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | 
						|
	return p;
 | 
						|
}
 | 
						|
#else
 | 
						|
static _Complex double zpow_ui(_Complex double x, integer n) {
 | 
						|
	_Complex double pow=1.0; unsigned long int u;
 | 
						|
	if(n != 0) {
 | 
						|
		if(n < 0) n = -n, x = 1/x;
 | 
						|
		for(u = n; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static integer pow_ii(integer x, integer n) {
 | 
						|
	integer pow; unsigned long int u;
 | 
						|
	if (n <= 0) {
 | 
						|
		if (n == 0 || x == 1) pow = 1;
 | 
						|
		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | 
						|
		else n = -n;
 | 
						|
	}
 | 
						|
	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | 
						|
		u = n;
 | 
						|
		for(pow = 1; ; ) {
 | 
						|
			if(u & 01) pow *= x;
 | 
						|
			if(u >>= 1) x *= x;
 | 
						|
			else break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return pow;
 | 
						|
}
 | 
						|
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	double m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | 
						|
{
 | 
						|
	float m; integer i, mi;
 | 
						|
	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | 
						|
		if (w[i-1]>m) mi=i ,m=w[i-1];
 | 
						|
	return mi-s+1;
 | 
						|
}
 | 
						|
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif	
 | 
						|
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Fcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex float zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCf(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | 
						|
	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | 
						|
#ifdef _MSC_VER
 | 
						|
	_Dcomplex zdotc = {0.0, 0.0};
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | 
						|
			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#else
 | 
						|
	_Complex double zdotc = 0.0;
 | 
						|
	if (incx == 1 && incy == 1) {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | 
						|
			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	pCd(z) = zdotc;
 | 
						|
}
 | 
						|
#endif
 | 
						|
/*  -- translated by f2c (version 20000121).
 | 
						|
   You must link the resulting object file with the libraries:
 | 
						|
	-lf2c -lm   (in that order)
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Table of constant values */
 | 
						|
 | 
						|
static complex c_b1 = {0.f,0.f};
 | 
						|
static complex c_b2 = {1.f,0.f};
 | 
						|
static integer c__1 = 1;
 | 
						|
static integer c__0 = 0;
 | 
						|
static integer c_n1 = -1;
 | 
						|
 | 
						|
/* > \brief <b> CGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matr
 | 
						|
ices</b> */
 | 
						|
 | 
						|
/*  =========== DOCUMENTATION =========== */
 | 
						|
 | 
						|
/* Online html documentation available at */
 | 
						|
/*            http://www.netlib.org/lapack/explore-html/ */
 | 
						|
 | 
						|
/* > \htmlonly */
 | 
						|
/* > Download CGGEV + dependencies */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggev.f
 | 
						|
"> */
 | 
						|
/* > [TGZ]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggev.f
 | 
						|
"> */
 | 
						|
/* > [ZIP]</a> */
 | 
						|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggev.f
 | 
						|
"> */
 | 
						|
/* > [TXT]</a> */
 | 
						|
/* > \endhtmlonly */
 | 
						|
 | 
						|
/*  Definition: */
 | 
						|
/*  =========== */
 | 
						|
 | 
						|
/*       SUBROUTINE CGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, */
 | 
						|
/*                         VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO ) */
 | 
						|
 | 
						|
/*       CHARACTER          JOBVL, JOBVR */
 | 
						|
/*       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
 | 
						|
/*       REAL               RWORK( * ) */
 | 
						|
/*       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ), */
 | 
						|
/*      $                   BETA( * ), VL( LDVL, * ), VR( LDVR, * ), */
 | 
						|
/*      $                   WORK( * ) */
 | 
						|
 | 
						|
 | 
						|
/* > \par Purpose: */
 | 
						|
/*  ============= */
 | 
						|
/* > */
 | 
						|
/* > \verbatim */
 | 
						|
/* > */
 | 
						|
/* > CGGEV computes for a pair of N-by-N complex nonsymmetric matrices */
 | 
						|
/* > (A,B), the generalized eigenvalues, and optionally, the left and/or */
 | 
						|
/* > right generalized eigenvectors. */
 | 
						|
/* > */
 | 
						|
/* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
 | 
						|
/* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
 | 
						|
/* > singular. It is usually represented as the pair (alpha,beta), as */
 | 
						|
/* > there is a reasonable interpretation for beta=0, and even for both */
 | 
						|
/* > being zero. */
 | 
						|
/* > */
 | 
						|
/* > The right generalized eigenvector v(j) corresponding to the */
 | 
						|
/* > generalized eigenvalue lambda(j) of (A,B) satisfies */
 | 
						|
/* > */
 | 
						|
/* >              A * v(j) = lambda(j) * B * v(j). */
 | 
						|
/* > */
 | 
						|
/* > The left generalized eigenvector u(j) corresponding to the */
 | 
						|
/* > generalized eigenvalues lambda(j) of (A,B) satisfies */
 | 
						|
/* > */
 | 
						|
/* >              u(j)**H * A = lambda(j) * u(j)**H * B */
 | 
						|
/* > */
 | 
						|
/* > where u(j)**H is the conjugate-transpose of u(j). */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Arguments: */
 | 
						|
/*  ========== */
 | 
						|
 | 
						|
/* > \param[in] JOBVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVL is CHARACTER*1 */
 | 
						|
/* >          = 'N':  do not compute the left generalized eigenvectors; */
 | 
						|
/* >          = 'V':  compute the left generalized eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] JOBVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          JOBVR is CHARACTER*1 */
 | 
						|
/* >          = 'N':  do not compute the right generalized eigenvectors; */
 | 
						|
/* >          = 'V':  compute the right generalized eigenvectors. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] N */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          N is INTEGER */
 | 
						|
/* >          The order of the matrices A, B, VL, and VR.  N >= 0. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] A */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          A is COMPLEX array, dimension (LDA, N) */
 | 
						|
/* >          On entry, the matrix A in the pair (A,B). */
 | 
						|
/* >          On exit, A has been overwritten. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDA is INTEGER */
 | 
						|
/* >          The leading dimension of A.  LDA >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in,out] B */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          B is COMPLEX array, dimension (LDB, N) */
 | 
						|
/* >          On entry, the matrix B in the pair (A,B). */
 | 
						|
/* >          On exit, B has been overwritten. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDB */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDB is INTEGER */
 | 
						|
/* >          The leading dimension of B.  LDB >= f2cmax(1,N). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] ALPHA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          ALPHA is COMPLEX array, dimension (N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] BETA */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          BETA is COMPLEX array, dimension (N) */
 | 
						|
/* >          On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */
 | 
						|
/* >          generalized eigenvalues. */
 | 
						|
/* > */
 | 
						|
/* >          Note: the quotients ALPHA(j)/BETA(j) may easily over- or */
 | 
						|
/* >          underflow, and BETA(j) may even be zero.  Thus, the user */
 | 
						|
/* >          should avoid naively computing the ratio alpha/beta. */
 | 
						|
/* >          However, ALPHA will be always less than and usually */
 | 
						|
/* >          comparable with norm(A) in magnitude, and BETA always less */
 | 
						|
/* >          than and usually comparable with norm(B). */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VL is COMPLEX array, dimension (LDVL,N) */
 | 
						|
/* >          If JOBVL = 'V', the left generalized eigenvectors u(j) are */
 | 
						|
/* >          stored one after another in the columns of VL, in the same */
 | 
						|
/* >          order as their eigenvalues. */
 | 
						|
/* >          Each eigenvector is scaled so the largest component has */
 | 
						|
/* >          abs(real part) + abs(imag. part) = 1. */
 | 
						|
/* >          Not referenced if JOBVL = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVL */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVL is INTEGER */
 | 
						|
/* >          The leading dimension of the matrix VL. LDVL >= 1, and */
 | 
						|
/* >          if JOBVL = 'V', LDVL >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] VR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          VR is COMPLEX array, dimension (LDVR,N) */
 | 
						|
/* >          If JOBVR = 'V', the right generalized eigenvectors v(j) are */
 | 
						|
/* >          stored one after another in the columns of VR, in the same */
 | 
						|
/* >          order as their eigenvalues. */
 | 
						|
/* >          Each eigenvector is scaled so the largest component has */
 | 
						|
/* >          abs(real part) + abs(imag. part) = 1. */
 | 
						|
/* >          Not referenced if JOBVR = 'N'. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LDVR */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LDVR is INTEGER */
 | 
						|
/* >          The leading dimension of the matrix VR. LDVR >= 1, and */
 | 
						|
/* >          if JOBVR = 'V', LDVR >= N. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] WORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
 | 
						|
/* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[in] LWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          LWORK is INTEGER */
 | 
						|
/* >          The dimension of the array WORK.  LWORK >= f2cmax(1,2*N). */
 | 
						|
/* >          For good performance, LWORK must generally be larger. */
 | 
						|
/* > */
 | 
						|
/* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | 
						|
/* >          only calculates the optimal size of the WORK array, returns */
 | 
						|
/* >          this value as the first entry of the WORK array, and no error */
 | 
						|
/* >          message related to LWORK is issued by XERBLA. */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] RWORK */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          RWORK is REAL array, dimension (8*N) */
 | 
						|
/* > \endverbatim */
 | 
						|
/* > */
 | 
						|
/* > \param[out] INFO */
 | 
						|
/* > \verbatim */
 | 
						|
/* >          INFO is INTEGER */
 | 
						|
/* >          = 0:  successful exit */
 | 
						|
/* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | 
						|
/* >          =1,...,N: */
 | 
						|
/* >                The QZ iteration failed.  No eigenvectors have been */
 | 
						|
/* >                calculated, but ALPHA(j) and BETA(j) should be */
 | 
						|
/* >                correct for j=INFO+1,...,N. */
 | 
						|
/* >          > N:  =N+1: other then QZ iteration failed in SHGEQZ, */
 | 
						|
/* >                =N+2: error return from STGEVC. */
 | 
						|
/* > \endverbatim */
 | 
						|
 | 
						|
/*  Authors: */
 | 
						|
/*  ======== */
 | 
						|
 | 
						|
/* > \author Univ. of Tennessee */
 | 
						|
/* > \author Univ. of California Berkeley */
 | 
						|
/* > \author Univ. of Colorado Denver */
 | 
						|
/* > \author NAG Ltd. */
 | 
						|
 | 
						|
/* > \date April 2012 */
 | 
						|
 | 
						|
/* > \ingroup complexGEeigen */
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
/* Subroutine */ void cggev_(char *jobvl, char *jobvr, integer *n, complex *a, 
 | 
						|
	integer *lda, complex *b, integer *ldb, complex *alpha, complex *beta,
 | 
						|
	 complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex *
 | 
						|
	work, integer *lwork, real *rwork, integer *info)
 | 
						|
{
 | 
						|
    /* System generated locals */
 | 
						|
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
 | 
						|
	    vr_offset, i__1, i__2, i__3, i__4;
 | 
						|
    real r__1, r__2, r__3, r__4;
 | 
						|
    complex q__1;
 | 
						|
 | 
						|
    /* Local variables */
 | 
						|
    real anrm, bnrm;
 | 
						|
    integer ierr, itau;
 | 
						|
    real temp;
 | 
						|
    logical ilvl, ilvr;
 | 
						|
    integer iwrk;
 | 
						|
    extern logical lsame_(char *, char *);
 | 
						|
    integer ileft, icols, irwrk, irows, jc;
 | 
						|
    extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, real *, real *, integer *, complex *, integer *, 
 | 
						|
	    integer *), cggbal_(char *, integer *, complex *, 
 | 
						|
	    integer *, complex *, integer *, integer *, integer *, real *, 
 | 
						|
	    real *, real *, integer *), slabad_(real *, real *);
 | 
						|
    integer in;
 | 
						|
    extern real clange_(char *, integer *, integer *, complex *, integer *, 
 | 
						|
	    real *);
 | 
						|
    integer jr;
 | 
						|
    extern /* Subroutine */ void cgghrd_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, complex *, integer *, complex *, integer *, complex *, 
 | 
						|
	    integer *, complex *, integer *, integer *), 
 | 
						|
	    clascl_(char *, integer *, integer *, real *, real *, integer *, 
 | 
						|
	    integer *, complex *, integer *, integer *);
 | 
						|
    logical ilascl, ilbscl;
 | 
						|
    extern /* Subroutine */ void cgeqrf_(integer *, integer *, complex *, 
 | 
						|
	    integer *, complex *, complex *, integer *, integer *), clacpy_(
 | 
						|
	    char *, integer *, integer *, complex *, integer *, complex *, 
 | 
						|
	    integer *), claset_(char *, integer *, integer *, complex 
 | 
						|
	    *, complex *, complex *, integer *), ctgevc_(char *, char 
 | 
						|
	    *, logical *, integer *, complex *, integer *, complex *, integer 
 | 
						|
	    *, complex *, integer *, complex *, integer *, integer *, integer 
 | 
						|
	    *, complex *, real *, integer *);
 | 
						|
    extern int xerbla_(char *, integer *, ftnlen);
 | 
						|
    logical ldumma[1];
 | 
						|
    char chtemp[1];
 | 
						|
    real bignum;
 | 
						|
    extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *, 
 | 
						|
	    integer *, integer *, complex *, integer *, complex *, integer *, 
 | 
						|
	    complex *, complex *, complex *, integer *, complex *, integer *, 
 | 
						|
	    complex *, integer *, real *, integer *);
 | 
						|
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | 
						|
	    integer *, integer *, ftnlen, ftnlen);
 | 
						|
    extern real slamch_(char *);
 | 
						|
    integer ijobvl, iright, ijobvr;
 | 
						|
    extern /* Subroutine */ void cungqr_(integer *, integer *, integer *, 
 | 
						|
	    complex *, integer *, complex *, complex *, integer *, integer *);
 | 
						|
    real anrmto;
 | 
						|
    integer lwkmin;
 | 
						|
    real bnrmto;
 | 
						|
    extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *, 
 | 
						|
	    integer *, complex *, integer *, complex *, complex *, integer *, 
 | 
						|
	    complex *, integer *, integer *);
 | 
						|
    real smlnum;
 | 
						|
    integer lwkopt;
 | 
						|
    logical lquery;
 | 
						|
    integer ihi, ilo;
 | 
						|
    real eps;
 | 
						|
    logical ilv;
 | 
						|
 | 
						|
 | 
						|
/*  -- LAPACK driver routine (version 3.7.0) -- */
 | 
						|
/*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | 
						|
/*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | 
						|
/*     April 2012 */
 | 
						|
 | 
						|
 | 
						|
/*  ===================================================================== */
 | 
						|
 | 
						|
 | 
						|
/*     Decode the input arguments */
 | 
						|
 | 
						|
    /* Parameter adjustments */
 | 
						|
    a_dim1 = *lda;
 | 
						|
    a_offset = 1 + a_dim1 * 1;
 | 
						|
    a -= a_offset;
 | 
						|
    b_dim1 = *ldb;
 | 
						|
    b_offset = 1 + b_dim1 * 1;
 | 
						|
    b -= b_offset;
 | 
						|
    --alpha;
 | 
						|
    --beta;
 | 
						|
    vl_dim1 = *ldvl;
 | 
						|
    vl_offset = 1 + vl_dim1 * 1;
 | 
						|
    vl -= vl_offset;
 | 
						|
    vr_dim1 = *ldvr;
 | 
						|
    vr_offset = 1 + vr_dim1 * 1;
 | 
						|
    vr -= vr_offset;
 | 
						|
    --work;
 | 
						|
    --rwork;
 | 
						|
 | 
						|
    /* Function Body */
 | 
						|
    if (lsame_(jobvl, "N")) {
 | 
						|
	ijobvl = 1;
 | 
						|
	ilvl = FALSE_;
 | 
						|
    } else if (lsame_(jobvl, "V")) {
 | 
						|
	ijobvl = 2;
 | 
						|
	ilvl = TRUE_;
 | 
						|
    } else {
 | 
						|
	ijobvl = -1;
 | 
						|
	ilvl = FALSE_;
 | 
						|
    }
 | 
						|
 | 
						|
    if (lsame_(jobvr, "N")) {
 | 
						|
	ijobvr = 1;
 | 
						|
	ilvr = FALSE_;
 | 
						|
    } else if (lsame_(jobvr, "V")) {
 | 
						|
	ijobvr = 2;
 | 
						|
	ilvr = TRUE_;
 | 
						|
    } else {
 | 
						|
	ijobvr = -1;
 | 
						|
	ilvr = FALSE_;
 | 
						|
    }
 | 
						|
    ilv = ilvl || ilvr;
 | 
						|
 | 
						|
/*     Test the input arguments */
 | 
						|
 | 
						|
    *info = 0;
 | 
						|
    lquery = *lwork == -1;
 | 
						|
    if (ijobvl <= 0) {
 | 
						|
	*info = -1;
 | 
						|
    } else if (ijobvr <= 0) {
 | 
						|
	*info = -2;
 | 
						|
    } else if (*n < 0) {
 | 
						|
	*info = -3;
 | 
						|
    } else if (*lda < f2cmax(1,*n)) {
 | 
						|
	*info = -5;
 | 
						|
    } else if (*ldb < f2cmax(1,*n)) {
 | 
						|
	*info = -7;
 | 
						|
    } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
 | 
						|
	*info = -11;
 | 
						|
    } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
 | 
						|
	*info = -13;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute workspace */
 | 
						|
/*      (Note: Comments in the code beginning "Workspace:" describe the */
 | 
						|
/*       minimal amount of workspace needed at that point in the code, */
 | 
						|
/*       as well as the preferred amount for good performance. */
 | 
						|
/*       NB refers to the optimal block size for the immediately */
 | 
						|
/*       following subroutine, as returned by ILAENV. The workspace is */
 | 
						|
/*       computed assuming ILO = 1 and IHI = N, the worst case.) */
 | 
						|
 | 
						|
    if (*info == 0) {
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = 1, i__2 = *n << 1;
 | 
						|
	lwkmin = f2cmax(i__1,i__2);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = 1, i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", n, &c__1, n, 
 | 
						|
		&c__0, (ftnlen)6, (ftnlen)1);
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
/* Computing MAX */
 | 
						|
	i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "CUNMQR", " ", n, &
 | 
						|
		c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
 | 
						|
	lwkopt = f2cmax(i__1,i__2);
 | 
						|
	if (ilvl) {
 | 
						|
/* Computing MAX */
 | 
						|
	    i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "CUNGQR", " ", n, &
 | 
						|
		    c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
 | 
						|
	    lwkopt = f2cmax(i__1,i__2);
 | 
						|
	}
 | 
						|
	work[1].r = (real) lwkopt, work[1].i = 0.f;
 | 
						|
 | 
						|
	if (*lwork < lwkmin && ! lquery) {
 | 
						|
	    *info = -15;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    if (*info != 0) {
 | 
						|
	i__1 = -(*info);
 | 
						|
	xerbla_("CGGEV ", &i__1, (ftnlen)6);
 | 
						|
	return;
 | 
						|
    } else if (lquery) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Quick return if possible */
 | 
						|
 | 
						|
    if (*n == 0) {
 | 
						|
	return;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Get machine constants */
 | 
						|
 | 
						|
    eps = slamch_("E") * slamch_("B");
 | 
						|
    smlnum = slamch_("S");
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
    slabad_(&smlnum, &bignum);
 | 
						|
    smlnum = sqrt(smlnum) / eps;
 | 
						|
    bignum = 1.f / smlnum;
 | 
						|
 | 
						|
/*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | 
						|
 | 
						|
    anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
 | 
						|
    ilascl = FALSE_;
 | 
						|
    if (anrm > 0.f && anrm < smlnum) {
 | 
						|
	anrmto = smlnum;
 | 
						|
	ilascl = TRUE_;
 | 
						|
    } else if (anrm > bignum) {
 | 
						|
	anrmto = bignum;
 | 
						|
	ilascl = TRUE_;
 | 
						|
    }
 | 
						|
    if (ilascl) {
 | 
						|
	clascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
 | 
						|
 | 
						|
    bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
 | 
						|
    ilbscl = FALSE_;
 | 
						|
    if (bnrm > 0.f && bnrm < smlnum) {
 | 
						|
	bnrmto = smlnum;
 | 
						|
	ilbscl = TRUE_;
 | 
						|
    } else if (bnrm > bignum) {
 | 
						|
	bnrmto = bignum;
 | 
						|
	ilbscl = TRUE_;
 | 
						|
    }
 | 
						|
    if (ilbscl) {
 | 
						|
	clascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Permute the matrices A, B to isolate eigenvalues if possible */
 | 
						|
/*     (Real Workspace: need 6*N) */
 | 
						|
 | 
						|
    ileft = 1;
 | 
						|
    iright = *n + 1;
 | 
						|
    irwrk = iright + *n;
 | 
						|
    cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
 | 
						|
	    ileft], &rwork[iright], &rwork[irwrk], &ierr);
 | 
						|
 | 
						|
/*     Reduce B to triangular form (QR decomposition of B) */
 | 
						|
/*     (Complex Workspace: need N, prefer N*NB) */
 | 
						|
 | 
						|
    irows = ihi + 1 - ilo;
 | 
						|
    if (ilv) {
 | 
						|
	icols = *n + 1 - ilo;
 | 
						|
    } else {
 | 
						|
	icols = irows;
 | 
						|
    }
 | 
						|
    itau = 1;
 | 
						|
    iwrk = itau + irows;
 | 
						|
    i__1 = *lwork + 1 - iwrk;
 | 
						|
    cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 | 
						|
	    iwrk], &i__1, &ierr);
 | 
						|
 | 
						|
/*     Apply the orthogonal transformation to matrix A */
 | 
						|
/*     (Complex Workspace: need N, prefer N*NB) */
 | 
						|
 | 
						|
    i__1 = *lwork + 1 - iwrk;
 | 
						|
    cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 | 
						|
	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
 | 
						|
	    ierr);
 | 
						|
 | 
						|
/*     Initialize VL */
 | 
						|
/*     (Complex Workspace: need N, prefer N*NB) */
 | 
						|
 | 
						|
    if (ilvl) {
 | 
						|
	claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl);
 | 
						|
	if (irows > 1) {
 | 
						|
	    i__1 = irows - 1;
 | 
						|
	    i__2 = irows - 1;
 | 
						|
	    clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
 | 
						|
		    ilo + 1 + ilo * vl_dim1], ldvl);
 | 
						|
	}
 | 
						|
	i__1 = *lwork + 1 - iwrk;
 | 
						|
	cungqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
 | 
						|
		itau], &work[iwrk], &i__1, &ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Initialize VR */
 | 
						|
 | 
						|
    if (ilvr) {
 | 
						|
	claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Reduce to generalized Hessenberg form */
 | 
						|
 | 
						|
    if (ilv) {
 | 
						|
 | 
						|
/*        Eigenvectors requested -- work on whole matrix. */
 | 
						|
 | 
						|
	cgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 | 
						|
		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
 | 
						|
    } else {
 | 
						|
	cgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, 
 | 
						|
		&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
 | 
						|
		vr_offset], ldvr, &ierr);
 | 
						|
    }
 | 
						|
 | 
						|
/*     Perform QZ algorithm (Compute eigenvalues, and optionally, the */
 | 
						|
/*     Schur form and Schur vectors) */
 | 
						|
/*     (Complex Workspace: need N) */
 | 
						|
/*     (Real Workspace: need N) */
 | 
						|
 | 
						|
    iwrk = itau;
 | 
						|
    if (ilv) {
 | 
						|
	*(unsigned char *)chtemp = 'S';
 | 
						|
    } else {
 | 
						|
	*(unsigned char *)chtemp = 'E';
 | 
						|
    }
 | 
						|
    i__1 = *lwork + 1 - iwrk;
 | 
						|
    chgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 | 
						|
	    b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[
 | 
						|
	    vr_offset], ldvr, &work[iwrk], &i__1, &rwork[irwrk], &ierr);
 | 
						|
    if (ierr != 0) {
 | 
						|
	if (ierr > 0 && ierr <= *n) {
 | 
						|
	    *info = ierr;
 | 
						|
	} else if (ierr > *n && ierr <= *n << 1) {
 | 
						|
	    *info = ierr - *n;
 | 
						|
	} else {
 | 
						|
	    *info = *n + 1;
 | 
						|
	}
 | 
						|
	goto L70;
 | 
						|
    }
 | 
						|
 | 
						|
/*     Compute Eigenvectors */
 | 
						|
/*     (Real Workspace: need 2*N) */
 | 
						|
/*     (Complex Workspace: need 2*N) */
 | 
						|
 | 
						|
    if (ilv) {
 | 
						|
	if (ilvl) {
 | 
						|
	    if (ilvr) {
 | 
						|
		*(unsigned char *)chtemp = 'B';
 | 
						|
	    } else {
 | 
						|
		*(unsigned char *)chtemp = 'L';
 | 
						|
	    }
 | 
						|
	} else {
 | 
						|
	    *(unsigned char *)chtemp = 'R';
 | 
						|
	}
 | 
						|
 | 
						|
	ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
 | 
						|
		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
 | 
						|
		iwrk], &rwork[irwrk], &ierr);
 | 
						|
	if (ierr != 0) {
 | 
						|
	    *info = *n + 2;
 | 
						|
	    goto L70;
 | 
						|
	}
 | 
						|
 | 
						|
/*        Undo balancing on VL and VR and normalization */
 | 
						|
/*        (Workspace: none needed) */
 | 
						|
 | 
						|
	if (ilvl) {
 | 
						|
	    cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
 | 
						|
		     &vl[vl_offset], ldvl, &ierr);
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (jc = 1; jc <= i__1; ++jc) {
 | 
						|
		temp = 0.f;
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
/* Computing MAX */
 | 
						|
		    i__3 = jr + jc * vl_dim1;
 | 
						|
		    r__3 = temp, r__4 = (r__1 = vl[i__3].r, abs(r__1)) + (
 | 
						|
			    r__2 = r_imag(&vl[jr + jc * vl_dim1]), abs(r__2));
 | 
						|
		    temp = f2cmax(r__3,r__4);
 | 
						|
/* L10: */
 | 
						|
		}
 | 
						|
		if (temp < smlnum) {
 | 
						|
		    goto L30;
 | 
						|
		}
 | 
						|
		temp = 1.f / temp;
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    i__3 = jr + jc * vl_dim1;
 | 
						|
		    i__4 = jr + jc * vl_dim1;
 | 
						|
		    q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i;
 | 
						|
		    vl[i__3].r = q__1.r, vl[i__3].i = q__1.i;
 | 
						|
/* L20: */
 | 
						|
		}
 | 
						|
L30:
 | 
						|
		;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
	if (ilvr) {
 | 
						|
	    cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
 | 
						|
		     &vr[vr_offset], ldvr, &ierr);
 | 
						|
	    i__1 = *n;
 | 
						|
	    for (jc = 1; jc <= i__1; ++jc) {
 | 
						|
		temp = 0.f;
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
/* Computing MAX */
 | 
						|
		    i__3 = jr + jc * vr_dim1;
 | 
						|
		    r__3 = temp, r__4 = (r__1 = vr[i__3].r, abs(r__1)) + (
 | 
						|
			    r__2 = r_imag(&vr[jr + jc * vr_dim1]), abs(r__2));
 | 
						|
		    temp = f2cmax(r__3,r__4);
 | 
						|
/* L40: */
 | 
						|
		}
 | 
						|
		if (temp < smlnum) {
 | 
						|
		    goto L60;
 | 
						|
		}
 | 
						|
		temp = 1.f / temp;
 | 
						|
		i__2 = *n;
 | 
						|
		for (jr = 1; jr <= i__2; ++jr) {
 | 
						|
		    i__3 = jr + jc * vr_dim1;
 | 
						|
		    i__4 = jr + jc * vr_dim1;
 | 
						|
		    q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i;
 | 
						|
		    vr[i__3].r = q__1.r, vr[i__3].i = q__1.i;
 | 
						|
/* L50: */
 | 
						|
		}
 | 
						|
L60:
 | 
						|
		;
 | 
						|
	    }
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
/*     Undo scaling if necessary */
 | 
						|
 | 
						|
L70:
 | 
						|
 | 
						|
    if (ilascl) {
 | 
						|
	clascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ilbscl) {
 | 
						|
	clascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 | 
						|
		ierr);
 | 
						|
    }
 | 
						|
 | 
						|
    work[1].r = (real) lwkopt, work[1].i = 0.f;
 | 
						|
    return;
 | 
						|
 | 
						|
/*     End of CGGEV */
 | 
						|
 | 
						|
} /* cggev_ */
 | 
						|
 |