696 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			696 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTGSYL
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTGSYL + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsyl.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsyl.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsyl.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 | |
| *                          LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
 | |
| *                          IWORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
 | |
| *      $                   LWORK, M, N
 | |
| *       REAL               DIF, SCALE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | |
| *      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTGSYL solves the generalized Sylvester equation:
 | |
| *>
 | |
| *>             A * R - L * B = scale * C            (1)
 | |
| *>             D * R - L * E = scale * F
 | |
| *>
 | |
| *> where R and L are unknown m-by-n matrices, (A, D), (B, E) and
 | |
| *> (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
 | |
| *> respectively, with complex entries. A, B, D and E are upper
 | |
| *> triangular (i.e., (A,D) and (B,E) in generalized Schur form).
 | |
| *>
 | |
| *> The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
 | |
| *> is an output scaling factor chosen to avoid overflow.
 | |
| *>
 | |
| *> In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
 | |
| *> is defined as
 | |
| *>
 | |
| *>        Z = [ kron(In, A)  -kron(B**H, Im) ]        (2)
 | |
| *>            [ kron(In, D)  -kron(E**H, Im) ],
 | |
| *>
 | |
| *> Here Ix is the identity matrix of size x and X**H is the conjugate
 | |
| *> transpose of X. Kron(X, Y) is the Kronecker product between the
 | |
| *> matrices X and Y.
 | |
| *>
 | |
| *> If TRANS = 'C', y in the conjugate transposed system Z**H *y = scale*b
 | |
| *> is solved for, which is equivalent to solve for R and L in
 | |
| *>
 | |
| *>             A**H * R + D**H * L = scale * C           (3)
 | |
| *>             R * B**H + L * E**H = scale * -F
 | |
| *>
 | |
| *> This case (TRANS = 'C') is used to compute an one-norm-based estimate
 | |
| *> of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
 | |
| *> and (B,E), using CLACON.
 | |
| *>
 | |
| *> If IJOB >= 1, CTGSYL computes a Frobenius norm-based estimate of
 | |
| *> Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
 | |
| *> reciprocal of the smallest singular value of Z.
 | |
| *>
 | |
| *> This is a level-3 BLAS algorithm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N': solve the generalized sylvester equation (1).
 | |
| *>          = 'C': solve the "conjugate transposed" system (3).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IJOB
 | |
| *> \verbatim
 | |
| *>          IJOB is INTEGER
 | |
| *>          Specifies what kind of functionality to be performed.
 | |
| *>          =0: solve (1) only.
 | |
| *>          =1: The functionality of 0 and 3.
 | |
| *>          =2: The functionality of 0 and 4.
 | |
| *>          =3: Only an estimate of Dif[(A,D), (B,E)] is computed.
 | |
| *>              (look ahead strategy is used).
 | |
| *>          =4: Only an estimate of Dif[(A,D), (B,E)] is computed.
 | |
| *>              (CGECON on sub-systems is used).
 | |
| *>          Not referenced if TRANS = 'C'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The order of the matrices A and D, and the row dimension of
 | |
| *>          the matrices C, F, R and L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices B and E, and the column dimension
 | |
| *>          of the matrices C, F, R and L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, M)
 | |
| *>          The upper triangular matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1, M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB, N)
 | |
| *>          The upper triangular matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1, N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX array, dimension (LDC, N)
 | |
| *>          On entry, C contains the right-hand-side of the first matrix
 | |
| *>          equation in (1) or (3).
 | |
| *>          On exit, if IJOB = 0, 1 or 2, C has been overwritten by
 | |
| *>          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
 | |
| *>          the solution achieved during the computation of the
 | |
| *>          Dif-estimate.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1, M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is COMPLEX array, dimension (LDD, M)
 | |
| *>          The upper triangular matrix D.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDD
 | |
| *> \verbatim
 | |
| *>          LDD is INTEGER
 | |
| *>          The leading dimension of the array D. LDD >= max(1, M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX array, dimension (LDE, N)
 | |
| *>          The upper triangular matrix E.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDE
 | |
| *> \verbatim
 | |
| *>          LDE is INTEGER
 | |
| *>          The leading dimension of the array E. LDE >= max(1, N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] F
 | |
| *> \verbatim
 | |
| *>          F is COMPLEX array, dimension (LDF, N)
 | |
| *>          On entry, F contains the right-hand-side of the second matrix
 | |
| *>          equation in (1) or (3).
 | |
| *>          On exit, if IJOB = 0, 1 or 2, F has been overwritten by
 | |
| *>          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
 | |
| *>          the solution achieved during the computation of the
 | |
| *>          Dif-estimate.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDF
 | |
| *> \verbatim
 | |
| *>          LDF is INTEGER
 | |
| *>          The leading dimension of the array F. LDF >= max(1, M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DIF
 | |
| *> \verbatim
 | |
| *>          DIF is REAL
 | |
| *>          On exit DIF is the reciprocal of a lower bound of the
 | |
| *>          reciprocal of the Dif-function, i.e. DIF is an upper bound of
 | |
| *>          Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
 | |
| *>          IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is REAL
 | |
| *>          On exit SCALE is the scaling factor in (1) or (3).
 | |
| *>          If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
 | |
| *>          to a slightly perturbed system but the input matrices A, B,
 | |
| *>          D and E have not been changed. If SCALE = 0, R and L will
 | |
| *>          hold the solutions to the homogenious system with C = F = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK > = 1.
 | |
| *>          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= max(1,2*M*N).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (M+N+2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>            =0: successful exit
 | |
| *>            <0: If INFO = -i, the i-th argument had an illegal value.
 | |
| *>            >0: (A, D) and (B, E) have common or very close
 | |
| *>                eigenvalues.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup complexSYcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
 | |
| *>      for Solving the Generalized Sylvester Equation and Estimating the
 | |
| *>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
 | |
| *>      Department of Computing Science, Umea University, S-901 87 Umea,
 | |
| *>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
 | |
| *>      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22,
 | |
| *>      No 1, 1996.
 | |
| *> \n
 | |
| *>  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
 | |
| *>      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
 | |
| *>      Appl., 15(4):1045-1060, 1994.
 | |
| *> \n
 | |
| *>  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with
 | |
| *>      Condition Estimators for Solving the Generalized Sylvester
 | |
| *>      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
 | |
| *>      July 1989, pp 745-751.
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
 | |
|      $                   LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
 | |
|      $                   IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
 | |
|      $                   LWORK, M, N
 | |
|       REAL               DIF, SCALE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), C( LDC, * ),
 | |
|      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *  Replaced various illegal calls to CCOPY by calls to CLASET.
 | |
| *  Sven Hammarling, 1/5/02.
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CZERO
 | |
|       PARAMETER          ( CZERO = (0.0E+0, 0.0E+0) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, NOTRAN
 | |
|       INTEGER            I, IE, IFUNC, IROUND, IS, ISOLVE, J, JE, JS, K,
 | |
|      $                   LINFO, LWMIN, MB, NB, P, PQ, Q
 | |
|       REAL               DSCALE, DSUM, SCALE2, SCALOC
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           LSAME, ILAENV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMM, CLACPY, CLASET, CSCAL, CTGSY2, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CMPLX, MAX, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( NOTRAN ) THEN
 | |
|          IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.4 ) ) THEN
 | |
|             INFO = -2
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( M.LE.0 ) THEN
 | |
|             INFO = -3
 | |
|          ELSE IF( N.LE.0 ) THEN
 | |
|             INFO = -4
 | |
|          ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|             INFO = -6
 | |
|          ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|             INFO = -8
 | |
|          ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|             INFO = -10
 | |
|          ELSE IF( LDD.LT.MAX( 1, M ) ) THEN
 | |
|             INFO = -12
 | |
|          ELSE IF( LDE.LT.MAX( 1, N ) ) THEN
 | |
|             INFO = -14
 | |
|          ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
 | |
|             INFO = -16
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( NOTRAN ) THEN
 | |
|             IF( IJOB.EQ.1 .OR. IJOB.EQ.2 ) THEN
 | |
|                LWMIN = MAX( 1, 2*M*N )
 | |
|             ELSE
 | |
|                LWMIN = 1
 | |
|             END IF
 | |
|          ELSE
 | |
|             LWMIN = 1
 | |
|          END IF
 | |
|          WORK( 1 ) = LWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -20
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTGSYL', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          SCALE = 1
 | |
|          IF( NOTRAN ) THEN
 | |
|             IF( IJOB.NE.0 ) THEN
 | |
|                DIF = 0
 | |
|             END IF
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Determine  optimal block sizes MB and NB
 | |
| *
 | |
|       MB = ILAENV( 2, 'CTGSYL', TRANS, M, N, -1, -1 )
 | |
|       NB = ILAENV( 5, 'CTGSYL', TRANS, M, N, -1, -1 )
 | |
| *
 | |
|       ISOLVE = 1
 | |
|       IFUNC = 0
 | |
|       IF( NOTRAN ) THEN
 | |
|          IF( IJOB.GE.3 ) THEN
 | |
|             IFUNC = IJOB - 2
 | |
|             CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
 | |
|             CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
 | |
|          ELSE IF( IJOB.GE.1 .AND. NOTRAN ) THEN
 | |
|             ISOLVE = 2
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( ( MB.LE.1 .AND. NB.LE.1 ) .OR. ( MB.GE.M .AND. NB.GE.N ) )
 | |
|      $     THEN
 | |
| *
 | |
| *        Use unblocked Level 2 solver
 | |
| *
 | |
|          DO 30 IROUND = 1, ISOLVE
 | |
| *
 | |
|             SCALE = ONE
 | |
|             DSCALE = ZERO
 | |
|             DSUM = ONE
 | |
|             PQ = M*N
 | |
|             CALL CTGSY2( TRANS, IFUNC, M, N, A, LDA, B, LDB, C, LDC, D,
 | |
|      $                   LDD, E, LDE, F, LDF, SCALE, DSUM, DSCALE,
 | |
|      $                   INFO )
 | |
|             IF( DSCALE.NE.ZERO ) THEN
 | |
|                IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
 | |
|                   DIF = SQRT( REAL( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
 | |
|                ELSE
 | |
|                   DIF = SQRT( REAL( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
 | |
|                END IF
 | |
|             END IF
 | |
|             IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
 | |
|                IF( NOTRAN ) THEN
 | |
|                   IFUNC = IJOB
 | |
|                END IF
 | |
|                SCALE2 = SCALE
 | |
|                CALL CLACPY( 'F', M, N, C, LDC, WORK, M )
 | |
|                CALL CLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
 | |
|                CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
 | |
|                CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
 | |
|             ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
 | |
|                CALL CLACPY( 'F', M, N, WORK, M, C, LDC )
 | |
|                CALL CLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
 | |
|                SCALE = SCALE2
 | |
|             END IF
 | |
|    30    CONTINUE
 | |
| *
 | |
|          RETURN
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Determine block structure of A
 | |
| *
 | |
|       P = 0
 | |
|       I = 1
 | |
|    40 CONTINUE
 | |
|       IF( I.GT.M )
 | |
|      $   GO TO 50
 | |
|       P = P + 1
 | |
|       IWORK( P ) = I
 | |
|       I = I + MB
 | |
|       IF( I.GE.M )
 | |
|      $   GO TO 50
 | |
|       GO TO 40
 | |
|    50 CONTINUE
 | |
|       IWORK( P+1 ) = M + 1
 | |
|       IF( IWORK( P ).EQ.IWORK( P+1 ) )
 | |
|      $   P = P - 1
 | |
| *
 | |
| *     Determine block structure of B
 | |
| *
 | |
|       Q = P + 1
 | |
|       J = 1
 | |
|    60 CONTINUE
 | |
|       IF( J.GT.N )
 | |
|      $   GO TO 70
 | |
| *
 | |
|       Q = Q + 1
 | |
|       IWORK( Q ) = J
 | |
|       J = J + NB
 | |
|       IF( J.GE.N )
 | |
|      $   GO TO 70
 | |
|       GO TO 60
 | |
| *
 | |
|    70 CONTINUE
 | |
|       IWORK( Q+1 ) = N + 1
 | |
|       IF( IWORK( Q ).EQ.IWORK( Q+1 ) )
 | |
|      $   Q = Q - 1
 | |
| *
 | |
|       IF( NOTRAN ) THEN
 | |
|          DO 150 IROUND = 1, ISOLVE
 | |
| *
 | |
| *           Solve (I, J) - subsystem
 | |
| *               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J)
 | |
| *               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J)
 | |
| *           for I = P, P - 1, ..., 1; J = 1, 2, ..., Q
 | |
| *
 | |
|             PQ = 0
 | |
|             SCALE = ONE
 | |
|             DSCALE = ZERO
 | |
|             DSUM = ONE
 | |
|             DO 130 J = P + 2, Q
 | |
|                JS = IWORK( J )
 | |
|                JE = IWORK( J+1 ) - 1
 | |
|                NB = JE - JS + 1
 | |
|                DO 120 I = P, 1, -1
 | |
|                   IS = IWORK( I )
 | |
|                   IE = IWORK( I+1 ) - 1
 | |
|                   MB = IE - IS + 1
 | |
|                   CALL CTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
 | |
|      $                         B( JS, JS ), LDB, C( IS, JS ), LDC,
 | |
|      $                         D( IS, IS ), LDD, E( JS, JS ), LDE,
 | |
|      $                         F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
 | |
|      $                         LINFO )
 | |
|                   IF( LINFO.GT.0 )
 | |
|      $               INFO = LINFO
 | |
|                   PQ = PQ + MB*NB
 | |
|                   IF( SCALOC.NE.ONE ) THEN
 | |
|                      DO 80 K = 1, JS - 1
 | |
|                         CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
 | |
|      $                              1 )
 | |
|                         CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
 | |
|      $                              1 )
 | |
|    80                CONTINUE
 | |
|                      DO 90 K = JS, JE
 | |
|                         CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ),
 | |
|      $                              C( 1, K ), 1 )
 | |
|                         CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ),
 | |
|      $                              F( 1, K ), 1 )
 | |
|    90                CONTINUE
 | |
|                      DO 100 K = JS, JE
 | |
|                         CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
 | |
|      $                              C( IE+1, K ), 1 )
 | |
|                         CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
 | |
|      $                              F( IE+1, K ), 1 )
 | |
|   100                CONTINUE
 | |
|                      DO 110 K = JE + 1, N
 | |
|                         CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
 | |
|      $                              1 )
 | |
|                         CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
 | |
|      $                              1 )
 | |
|   110                CONTINUE
 | |
|                      SCALE = SCALE*SCALOC
 | |
|                   END IF
 | |
| *
 | |
| *                 Substitute R(I,J) and L(I,J) into remaining equation.
 | |
| *
 | |
|                   IF( I.GT.1 ) THEN
 | |
|                      CALL CGEMM( 'N', 'N', IS-1, NB, MB,
 | |
|      $                           CMPLX( -ONE, ZERO ), A( 1, IS ), LDA,
 | |
|      $                           C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
 | |
|      $                           C( 1, JS ), LDC )
 | |
|                      CALL CGEMM( 'N', 'N', IS-1, NB, MB,
 | |
|      $                           CMPLX( -ONE, ZERO ), D( 1, IS ), LDD,
 | |
|      $                           C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
 | |
|      $                           F( 1, JS ), LDF )
 | |
|                   END IF
 | |
|                   IF( J.LT.Q ) THEN
 | |
|                      CALL CGEMM( 'N', 'N', MB, N-JE, NB,
 | |
|      $                           CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
 | |
|      $                           B( JS, JE+1 ), LDB, CMPLX( ONE, ZERO ),
 | |
|      $                           C( IS, JE+1 ), LDC )
 | |
|                      CALL CGEMM( 'N', 'N', MB, N-JE, NB,
 | |
|      $                           CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
 | |
|      $                           E( JS, JE+1 ), LDE, CMPLX( ONE, ZERO ),
 | |
|      $                           F( IS, JE+1 ), LDF )
 | |
|                   END IF
 | |
|   120          CONTINUE
 | |
|   130       CONTINUE
 | |
|             IF( DSCALE.NE.ZERO ) THEN
 | |
|                IF( IJOB.EQ.1 .OR. IJOB.EQ.3 ) THEN
 | |
|                   DIF = SQRT( REAL( 2*M*N ) ) / ( DSCALE*SQRT( DSUM ) )
 | |
|                ELSE
 | |
|                   DIF = SQRT( REAL( PQ ) ) / ( DSCALE*SQRT( DSUM ) )
 | |
|                END IF
 | |
|             END IF
 | |
|             IF( ISOLVE.EQ.2 .AND. IROUND.EQ.1 ) THEN
 | |
|                IF( NOTRAN ) THEN
 | |
|                   IFUNC = IJOB
 | |
|                END IF
 | |
|                SCALE2 = SCALE
 | |
|                CALL CLACPY( 'F', M, N, C, LDC, WORK, M )
 | |
|                CALL CLACPY( 'F', M, N, F, LDF, WORK( M*N+1 ), M )
 | |
|                CALL CLASET( 'F', M, N, CZERO, CZERO, C, LDC )
 | |
|                CALL CLASET( 'F', M, N, CZERO, CZERO, F, LDF )
 | |
|             ELSE IF( ISOLVE.EQ.2 .AND. IROUND.EQ.2 ) THEN
 | |
|                CALL CLACPY( 'F', M, N, WORK, M, C, LDC )
 | |
|                CALL CLACPY( 'F', M, N, WORK( M*N+1 ), M, F, LDF )
 | |
|                SCALE = SCALE2
 | |
|             END IF
 | |
|   150    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Solve transposed (I, J)-subsystem
 | |
| *            A(I, I)**H * R(I, J) + D(I, I)**H * L(I, J) = C(I, J)
 | |
| *            R(I, J) * B(J, J)  + L(I, J) * E(J, J) = -F(I, J)
 | |
| *        for I = 1,2,..., P; J = Q, Q-1,..., 1
 | |
| *
 | |
|          SCALE = ONE
 | |
|          DO 210 I = 1, P
 | |
|             IS = IWORK( I )
 | |
|             IE = IWORK( I+1 ) - 1
 | |
|             MB = IE - IS + 1
 | |
|             DO 200 J = Q, P + 2, -1
 | |
|                JS = IWORK( J )
 | |
|                JE = IWORK( J+1 ) - 1
 | |
|                NB = JE - JS + 1
 | |
|                CALL CTGSY2( TRANS, IFUNC, MB, NB, A( IS, IS ), LDA,
 | |
|      $                      B( JS, JS ), LDB, C( IS, JS ), LDC,
 | |
|      $                      D( IS, IS ), LDD, E( JS, JS ), LDE,
 | |
|      $                      F( IS, JS ), LDF, SCALOC, DSUM, DSCALE,
 | |
|      $                      LINFO )
 | |
|                IF( LINFO.GT.0 )
 | |
|      $            INFO = LINFO
 | |
|                IF( SCALOC.NE.ONE ) THEN
 | |
|                   DO 160 K = 1, JS - 1
 | |
|                      CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
 | |
|      $                           1 )
 | |
|                      CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
 | |
|      $                           1 )
 | |
|   160             CONTINUE
 | |
|                   DO 170 K = JS, JE
 | |
|                      CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ), C( 1, K ),
 | |
|      $                           1 )
 | |
|                      CALL CSCAL( IS-1, CMPLX( SCALOC, ZERO ), F( 1, K ),
 | |
|      $                           1 )
 | |
|   170             CONTINUE
 | |
|                   DO 180 K = JS, JE
 | |
|                      CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
 | |
|      $                           C( IE+1, K ), 1 )
 | |
|                      CALL CSCAL( M-IE, CMPLX( SCALOC, ZERO ),
 | |
|      $                           F( IE+1, K ), 1 )
 | |
|   180             CONTINUE
 | |
|                   DO 190 K = JE + 1, N
 | |
|                      CALL CSCAL( M, CMPLX( SCALOC, ZERO ), C( 1, K ),
 | |
|      $                           1 )
 | |
|                      CALL CSCAL( M, CMPLX( SCALOC, ZERO ), F( 1, K ),
 | |
|      $                           1 )
 | |
|   190             CONTINUE
 | |
|                   SCALE = SCALE*SCALOC
 | |
|                END IF
 | |
| *
 | |
| *              Substitute R(I,J) and L(I,J) into remaining equation.
 | |
| *
 | |
|                IF( J.GT.P+2 ) THEN
 | |
|                   CALL CGEMM( 'N', 'C', MB, JS-1, NB,
 | |
|      $                        CMPLX( ONE, ZERO ), C( IS, JS ), LDC,
 | |
|      $                        B( 1, JS ), LDB, CMPLX( ONE, ZERO ),
 | |
|      $                        F( IS, 1 ), LDF )
 | |
|                   CALL CGEMM( 'N', 'C', MB, JS-1, NB,
 | |
|      $                        CMPLX( ONE, ZERO ), F( IS, JS ), LDF,
 | |
|      $                        E( 1, JS ), LDE, CMPLX( ONE, ZERO ),
 | |
|      $                        F( IS, 1 ), LDF )
 | |
|                END IF
 | |
|                IF( I.LT.P ) THEN
 | |
|                   CALL CGEMM( 'C', 'N', M-IE, NB, MB,
 | |
|      $                        CMPLX( -ONE, ZERO ), A( IS, IE+1 ), LDA,
 | |
|      $                        C( IS, JS ), LDC, CMPLX( ONE, ZERO ),
 | |
|      $                        C( IE+1, JS ), LDC )
 | |
|                   CALL CGEMM( 'C', 'N', M-IE, NB, MB,
 | |
|      $                        CMPLX( -ONE, ZERO ), D( IS, IE+1 ), LDD,
 | |
|      $                        F( IS, JS ), LDF, CMPLX( ONE, ZERO ),
 | |
|      $                        C( IE+1, JS ), LDC )
 | |
|                END IF
 | |
|   200       CONTINUE
 | |
|   210    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTGSYL
 | |
| *
 | |
|       END
 |