329 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			329 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
|       SUBROUTINE CHERKF ( UPLO, TRANS, N, K, ALPHA, A, LDA,
 | |
|      $                   BETA, C, LDC )
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER*1        UPLO, TRANS
 | |
|       INTEGER            N, K, LDA, LDC
 | |
|       REAL               ALPHA, BETA
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            A( LDA, * ), C( LDC, * )
 | |
| *     ..
 | |
| *
 | |
| *  Purpose
 | |
| *  =======
 | |
| *
 | |
| *  CHERK  performs one of the hermitian rank k operations
 | |
| *
 | |
| *     C := alpha*A*conjg( A' ) + beta*C,
 | |
| *
 | |
| *  or
 | |
| *
 | |
| *     C := alpha*conjg( A' )*A + beta*C,
 | |
| *
 | |
| *  where  alpha and beta  are  real scalars,  C is an  n by n  hermitian
 | |
| *  matrix and  A  is an  n by k  matrix in the  first case and a  k by n
 | |
| *  matrix in the second case.
 | |
| *
 | |
| *  Parameters
 | |
| *  ==========
 | |
| *
 | |
| *  UPLO   - CHARACTER*1.
 | |
| *           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | |
| *           triangular  part  of the  array  C  is to be  referenced  as
 | |
| *           follows:
 | |
| *
 | |
| *              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
 | |
| *                                  is to be referenced.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  TRANS  - CHARACTER*1.
 | |
| *           On entry,  TRANS  specifies the operation to be performed as
 | |
| *           follows:
 | |
| *
 | |
| *              TRANS = 'N' or 'n'   C := alpha*A*conjg( A' ) + beta*C.
 | |
| *
 | |
| *              TRANS = 'C' or 'c'   C := alpha*conjg( A' )*A + beta*C.
 | |
| *
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  N      - INTEGER.
 | |
| *           On entry,  N specifies the order of the matrix C.  N must be
 | |
| *           at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  K      - INTEGER.
 | |
| *           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
 | |
| *           of  columns   of  the   matrix   A,   and  on   entry   with
 | |
| *           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
 | |
| *           matrix A.  K must be at least zero.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  ALPHA  - REAL            .
 | |
| *           On entry, ALPHA specifies the scalar alpha.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  A      - COMPLEX          array of DIMENSION ( LDA, ka ), where ka is
 | |
| *           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
 | |
| *           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
 | |
| *           part of the array  A  must contain the matrix  A,  otherwise
 | |
| *           the leading  k by n  part of the array  A  must contain  the
 | |
| *           matrix A.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  LDA    - INTEGER.
 | |
| *           On entry, LDA specifies the first dimension of A as declared
 | |
| *           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | |
| *           then  LDA must be at least  max( 1, n ), otherwise  LDA must
 | |
| *           be at least  max( 1, k ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  BETA   - REAL            .
 | |
| *           On entry, BETA specifies the scalar beta.
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *  C      - COMPLEX          array of DIMENSION ( LDC, n ).
 | |
| *           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
 | |
| *           upper triangular part of the array C must contain the upper
 | |
| *           triangular part  of the  hermitian matrix  and the strictly
 | |
| *           lower triangular part of C is not referenced.  On exit, the
 | |
| *           upper triangular part of the array  C is overwritten by the
 | |
| *           upper triangular part of the updated matrix.
 | |
| *           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
 | |
| *           lower triangular part of the array C must contain the lower
 | |
| *           triangular part  of the  hermitian matrix  and the strictly
 | |
| *           upper triangular part of C is not referenced.  On exit, the
 | |
| *           lower triangular part of the array  C is overwritten by the
 | |
| *           lower triangular part of the updated matrix.
 | |
| *           Note that the imaginary parts of the diagonal elements need
 | |
| *           not be set,  they are assumed to be zero,  and on exit they
 | |
| *           are set to zero.
 | |
| *
 | |
| *  LDC    - INTEGER.
 | |
| *           On entry, LDC specifies the first dimension of C as declared
 | |
| *           in  the  calling  (sub)  program.   LDC  must  be  at  least
 | |
| *           max( 1, n ).
 | |
| *           Unchanged on exit.
 | |
| *
 | |
| *
 | |
| *  Level 3 Blas routine.
 | |
| *
 | |
| *  -- Written on 8-February-1989.
 | |
| *     Jack Dongarra, Argonne National Laboratory.
 | |
| *     Iain Duff, AERE Harwell.
 | |
| *     Jeremy Du Croz, Numerical Algorithms Group Ltd.
 | |
| *     Sven Hammarling, Numerical Algorithms Group Ltd.
 | |
| *
 | |
| *  -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
 | |
| *     Ed Anderson, Cray Research Inc.
 | |
| *
 | |
| *
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          CMPLX, CONJG, MAX, REAL
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, INFO, J, L, NROWA
 | |
|       REAL               RTEMP
 | |
|       COMPLEX            TEMP
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE ,         ZERO
 | |
|       PARAMETER        ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) )THEN
 | |
|          NROWA = N
 | |
|       ELSE
 | |
|          NROWA = K
 | |
|       END IF
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF(      ( .NOT.UPPER               ).AND.
 | |
|      $         ( .NOT.LSAME( UPLO , 'L' ) )      )THEN
 | |
|          INFO = 1
 | |
|       ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
 | |
|      $         ( .NOT.LSAME( TRANS, 'C' ) )      )THEN
 | |
|          INFO = 2
 | |
|       ELSE IF( N  .LT.0               )THEN
 | |
|          INFO = 3
 | |
|       ELSE IF( K  .LT.0               )THEN
 | |
|          INFO = 4
 | |
|       ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
 | |
|          INFO = 7
 | |
|       ELSE IF( LDC.LT.MAX( 1, N     ) )THEN
 | |
|          INFO = 10
 | |
|       END IF
 | |
|       IF( INFO.NE.0 )THEN
 | |
|          CALL XERBLA( 'CHERK ', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( ( N.EQ.0 ).OR.
 | |
|      $    ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
 | |
|      $   RETURN
 | |
| *
 | |
| *     And when  alpha.eq.zero.
 | |
| *
 | |
|       IF( ALPHA.EQ.ZERO )THEN
 | |
|          IF( UPPER )THEN
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 20, J = 1, N
 | |
|                   DO 10, I = 1, J
 | |
|                      C( I, J ) = ZERO
 | |
|    10             CONTINUE
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                DO 40, J = 1, N
 | |
|                   DO 30, I = 1, J - 1
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|    30             CONTINUE
 | |
|                   C( J, J ) = BETA*REAL( C( J, J ) )
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( BETA.EQ.ZERO )THEN
 | |
|                DO 60, J = 1, N
 | |
|                   DO 50, I = J, N
 | |
|                      C( I, J ) = ZERO
 | |
|    50             CONTINUE
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                DO 80, J = 1, N
 | |
|                   C( J, J ) = BETA*REAL( C( J, J ) )
 | |
|                   DO 70, I = J + 1, N
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|    70             CONTINUE
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Start the operations.
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) )THEN
 | |
| *
 | |
| *        Form  C := alpha*A*conjg( A' ) + beta*C.
 | |
| *
 | |
|          IF( UPPER )THEN
 | |
|             DO 130, J = 1, N
 | |
|                IF( BETA.EQ.ZERO )THEN
 | |
|                   DO 90, I = 1, J
 | |
|                      C( I, J ) = ZERO
 | |
|    90             CONTINUE
 | |
|                ELSE IF( BETA.NE.ONE )THEN
 | |
|                   DO 100, I = 1, J - 1
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|   100             CONTINUE
 | |
|                   C( J, J ) = BETA*REAL( C( J, J ) )
 | |
|                ELSE
 | |
|                   C( J, J ) = REAL( C( J, J ) )
 | |
|                END IF
 | |
|                DO 120, L = 1, K
 | |
|                   IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
 | |
|                      TEMP = ALPHA*CONJG( A( J, L ) )
 | |
|                      DO 110, I = 1, J - 1
 | |
|                         C( I, J ) = C( I, J ) + TEMP*A( I, L )
 | |
|   110                CONTINUE
 | |
|                      C( J, J ) = REAL( C( J, J )      ) +
 | |
|      $                           REAL( TEMP*A( I, L ) )
 | |
|                   END IF
 | |
|   120          CONTINUE
 | |
|   130       CONTINUE
 | |
|          ELSE
 | |
|             DO 180, J = 1, N
 | |
|                IF( BETA.EQ.ZERO )THEN
 | |
|                   DO 140, I = J, N
 | |
|                      C( I, J ) = ZERO
 | |
|   140             CONTINUE
 | |
|                ELSE IF( BETA.NE.ONE )THEN
 | |
|                   C( J, J ) = BETA*REAL( C( J, J ) )
 | |
|                   DO 150, I = J + 1, N
 | |
|                      C( I, J ) = BETA*C( I, J )
 | |
|   150             CONTINUE
 | |
|                ELSE
 | |
|                   C( J, J ) = REAL( C( J, J ) )
 | |
|                END IF
 | |
|                DO 170, L = 1, K
 | |
|                   IF( A( J, L ).NE.CMPLX( ZERO ) )THEN
 | |
|                      TEMP      = ALPHA*CONJG( A( J, L ) )
 | |
|                      C( J, J ) = REAL( C( J, J )      )   +
 | |
|      $                           REAL( TEMP*A( J, L ) )
 | |
|                      DO 160, I = J + 1, N
 | |
|                         C( I, J ) = C( I, J ) + TEMP*A( I, L )
 | |
|   160                CONTINUE
 | |
|                   END IF
 | |
|   170          CONTINUE
 | |
|   180       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Form  C := alpha*conjg( A' )*A + beta*C.
 | |
| *
 | |
|          IF( UPPER )THEN
 | |
|             DO 220, J = 1, N
 | |
|                DO 200, I = 1, J - 1
 | |
|                   TEMP = ZERO
 | |
|                   DO 190, L = 1, K
 | |
|                      TEMP = TEMP + CONJG( A( L, I ) )*A( L, J )
 | |
|   190             CONTINUE
 | |
|                   IF( BETA.EQ.ZERO )THEN
 | |
|                      C( I, J ) = ALPHA*TEMP
 | |
|                   ELSE
 | |
|                      C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
 | |
|                   END IF
 | |
|   200          CONTINUE
 | |
|                RTEMP = ZERO
 | |
|                DO 210, L = 1, K
 | |
|                   RTEMP = RTEMP + CONJG( A( L, J ) )*A( L, J )
 | |
|   210          CONTINUE
 | |
|                IF( BETA.EQ.ZERO )THEN
 | |
|                   C( J, J ) = ALPHA*RTEMP
 | |
|                ELSE
 | |
|                   C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
 | |
|                END IF
 | |
|   220       CONTINUE
 | |
|          ELSE
 | |
|             DO 260, J = 1, N
 | |
|                RTEMP = ZERO
 | |
|                DO 230, L = 1, K
 | |
|                   RTEMP = RTEMP + CONJG( A( L, J ) )*A( L, J )
 | |
|   230          CONTINUE
 | |
|                IF( BETA.EQ.ZERO )THEN
 | |
|                   C( J, J ) = ALPHA*RTEMP
 | |
|                ELSE
 | |
|                   C( J, J ) = ALPHA*RTEMP + BETA*REAL( C( J, J ) )
 | |
|                END IF
 | |
|                DO 250, I = J + 1, N
 | |
|                   TEMP = ZERO
 | |
|                   DO 240, L = 1, K
 | |
|                      TEMP = TEMP + CONJG( A( L, I ) )*A( L, J )
 | |
|   240             CONTINUE
 | |
|                   IF( BETA.EQ.ZERO )THEN
 | |
|                      C( I, J ) = ALPHA*TEMP
 | |
|                   ELSE
 | |
|                      C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
 | |
|                   END IF
 | |
|   250          CONTINUE
 | |
|   260       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHERK .
 | |
| *
 | |
|       END
 |