918 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			918 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAED4 used by sstedc. Finds a single root of the secular equation.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAED4 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed4.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed4.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed4.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            I, INFO, N
 | |
| *       DOUBLE PRECISION   DLAM, RHO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), DELTA( * ), Z( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> This subroutine computes the I-th updated eigenvalue of a symmetric
 | |
| *> rank-one modification to a diagonal matrix whose elements are
 | |
| *> given in the array d, and that
 | |
| *>
 | |
| *>            D(i) < D(j)  for  i < j
 | |
| *>
 | |
| *> and that RHO > 0.  This is arranged by the calling routine, and is
 | |
| *> no loss in generality.  The rank-one modified system is thus
 | |
| *>
 | |
| *>            diag( D )  +  RHO * Z * Z_transpose.
 | |
| *>
 | |
| *> where we assume the Euclidean norm of Z is 1.
 | |
| *>
 | |
| *> The method consists of approximating the rational functions in the
 | |
| *> secular equation by simpler interpolating rational functions.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The length of all arrays.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] I
 | |
| *> \verbatim
 | |
| *>          I is INTEGER
 | |
| *>         The index of the eigenvalue to be computed.  1 <= I <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>         The original eigenvalues.  It is assumed that they are in
 | |
| *>         order, D(I) < D(J)  for I < J.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (N)
 | |
| *>         The components of the updating vector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DELTA
 | |
| *> \verbatim
 | |
| *>          DELTA is DOUBLE PRECISION array, dimension (N)
 | |
| *>         If N .GT. 2, DELTA contains (D(j) - lambda_I) in its  j-th
 | |
| *>         component.  If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5
 | |
| *>         for detail. The vector DELTA contains the information necessary
 | |
| *>         to construct the eigenvectors by DLAED3 and DLAED9.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RHO
 | |
| *> \verbatim
 | |
| *>          RHO is DOUBLE PRECISION
 | |
| *>         The scalar in the symmetric updating formula.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DLAM
 | |
| *> \verbatim
 | |
| *>          DLAM is DOUBLE PRECISION
 | |
| *>         The computed lambda_I, the I-th updated eigenvalue.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>         = 0:  successful exit
 | |
| *>         > 0:  if INFO = 1, the updating process failed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  Logical variable ORGATI (origin-at-i?) is used for distinguishing
 | |
| *>  whether D(i) or D(i+1) is treated as the origin.
 | |
| *>
 | |
| *>            ORGATI = .true.    origin at i
 | |
| *>            ORGATI = .false.   origin at i+1
 | |
| *>
 | |
| *>   Logical variable SWTCH3 (switch-for-3-poles?) is for noting
 | |
| *>   if we are working with THREE poles!
 | |
| *>
 | |
| *>   MAXIT is the maximum number of iterations allowed for each
 | |
| *>   eigenvalue.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ren-Cang Li, Computer Science Division, University of California
 | |
| *>     at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            I, INFO, N
 | |
|       DOUBLE PRECISION   DLAM, RHO
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), DELTA( * ), Z( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            MAXIT
 | |
|       PARAMETER          ( MAXIT = 30 )
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, EIGHT, TEN
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 | |
|      $                   THREE = 3.0D0, FOUR = 4.0D0, EIGHT = 8.0D0,
 | |
|      $                   TEN = 10.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ORGATI, SWTCH, SWTCH3
 | |
|       INTEGER            II, IIM1, IIP1, IP1, ITER, J, NITER
 | |
|       DOUBLE PRECISION   A, B, C, DEL, DLTLB, DLTUB, DPHI, DPSI, DW,
 | |
|      $                   EPS, ERRETM, ETA, MIDPT, PHI, PREW, PSI,
 | |
|      $                   RHOINV, TAU, TEMP, TEMP1, W
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   ZZ( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLAED5, DLAED6
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Since this routine is called in an inner loop, we do no argument
 | |
| *     checking.
 | |
| *
 | |
| *     Quick return for N=1 and 2.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.EQ.1 ) THEN
 | |
| *
 | |
| *         Presumably, I=1 upon entry
 | |
| *
 | |
|          DLAM = D( 1 ) + RHO*Z( 1 )*Z( 1 )
 | |
|          DELTA( 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
|       IF( N.EQ.2 ) THEN
 | |
|          CALL DLAED5( I, D, Z, DELTA, RHO, DLAM )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute machine epsilon
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       RHOINV = ONE / RHO
 | |
| *
 | |
| *     The case I = N
 | |
| *
 | |
|       IF( I.EQ.N ) THEN
 | |
| *
 | |
| *        Initialize some basic variables
 | |
| *
 | |
|          II = N - 1
 | |
|          NITER = 1
 | |
| *
 | |
| *        Calculate initial guess
 | |
| *
 | |
|          MIDPT = RHO / TWO
 | |
| *
 | |
| *        If ||Z||_2 is not one, then TEMP should be set to
 | |
| *        RHO * ||Z||_2^2 / TWO
 | |
| *
 | |
|          DO 10 J = 1, N
 | |
|             DELTA( J ) = ( D( J )-D( I ) ) - MIDPT
 | |
|    10    CONTINUE
 | |
| *
 | |
|          PSI = ZERO
 | |
|          DO 20 J = 1, N - 2
 | |
|             PSI = PSI + Z( J )*Z( J ) / DELTA( J )
 | |
|    20    CONTINUE
 | |
| *
 | |
|          C = RHOINV + PSI
 | |
|          W = C + Z( II )*Z( II ) / DELTA( II ) +
 | |
|      $       Z( N )*Z( N ) / DELTA( N )
 | |
| *
 | |
|          IF( W.LE.ZERO ) THEN
 | |
|             TEMP = Z( N-1 )*Z( N-1 ) / ( D( N )-D( N-1 )+RHO ) +
 | |
|      $             Z( N )*Z( N ) / RHO
 | |
|             IF( C.LE.TEMP ) THEN
 | |
|                TAU = RHO
 | |
|             ELSE
 | |
|                DEL = D( N ) - D( N-1 )
 | |
|                A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
 | |
|                B = Z( N )*Z( N )*DEL
 | |
|                IF( A.LT.ZERO ) THEN
 | |
|                   TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
 | |
|                ELSE
 | |
|                   TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           It can be proved that
 | |
| *               D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO
 | |
| *
 | |
|             DLTLB = MIDPT
 | |
|             DLTUB = RHO
 | |
|          ELSE
 | |
|             DEL = D( N ) - D( N-1 )
 | |
|             A = -C*DEL + Z( N-1 )*Z( N-1 ) + Z( N )*Z( N )
 | |
|             B = Z( N )*Z( N )*DEL
 | |
|             IF( A.LT.ZERO ) THEN
 | |
|                TAU = TWO*B / ( SQRT( A*A+FOUR*B*C )-A )
 | |
|             ELSE
 | |
|                TAU = ( A+SQRT( A*A+FOUR*B*C ) ) / ( TWO*C )
 | |
|             END IF
 | |
| *
 | |
| *           It can be proved that
 | |
| *               D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2
 | |
| *
 | |
|             DLTLB = ZERO
 | |
|             DLTUB = MIDPT
 | |
|          END IF
 | |
| *
 | |
|          DO 30 J = 1, N
 | |
|             DELTA( J ) = ( D( J )-D( I ) ) - TAU
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Evaluate PSI and the derivative DPSI
 | |
| *
 | |
|          DPSI = ZERO
 | |
|          PSI = ZERO
 | |
|          ERRETM = ZERO
 | |
|          DO 40 J = 1, II
 | |
|             TEMP = Z( J ) / DELTA( J )
 | |
|             PSI = PSI + Z( J )*TEMP
 | |
|             DPSI = DPSI + TEMP*TEMP
 | |
|             ERRETM = ERRETM + PSI
 | |
|    40    CONTINUE
 | |
|          ERRETM = ABS( ERRETM )
 | |
| *
 | |
| *        Evaluate PHI and the derivative DPHI
 | |
| *
 | |
|          TEMP = Z( N ) / DELTA( N )
 | |
|          PHI = Z( N )*TEMP
 | |
|          DPHI = TEMP*TEMP
 | |
|          ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
 | |
|      $            ABS( TAU )*( DPSI+DPHI )
 | |
| *
 | |
|          W = RHOINV + PHI + PSI
 | |
| *
 | |
| *        Test for convergence
 | |
| *
 | |
|          IF( ABS( W ).LE.EPS*ERRETM ) THEN
 | |
|             DLAM = D( I ) + TAU
 | |
|             GO TO 250
 | |
|          END IF
 | |
| *
 | |
|          IF( W.LE.ZERO ) THEN
 | |
|             DLTLB = MAX( DLTLB, TAU )
 | |
|          ELSE
 | |
|             DLTUB = MIN( DLTUB, TAU )
 | |
|          END IF
 | |
| *
 | |
| *        Calculate the new step
 | |
| *
 | |
|          NITER = NITER + 1
 | |
|          C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI
 | |
|          A = ( DELTA( N-1 )+DELTA( N ) )*W -
 | |
|      $       DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )
 | |
|          B = DELTA( N-1 )*DELTA( N )*W
 | |
|          IF( C.LT.ZERO )
 | |
|      $      C = ABS( C )
 | |
|          IF( C.EQ.ZERO ) THEN
 | |
| *          ETA = B/A
 | |
| *           ETA = RHO - TAU
 | |
|             ETA = DLTUB - TAU
 | |
|          ELSE IF( A.GE.ZERO ) THEN
 | |
|             ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
 | |
|          ELSE
 | |
|             ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
 | |
|          END IF
 | |
| *
 | |
| *        Note, eta should be positive if w is negative, and
 | |
| *        eta should be negative otherwise. However,
 | |
| *        if for some reason caused by roundoff, eta*w > 0,
 | |
| *        we simply use one Newton step instead. This way
 | |
| *        will guarantee eta*w < 0.
 | |
| *
 | |
|          IF( W*ETA.GT.ZERO )
 | |
|      $      ETA = -W / ( DPSI+DPHI )
 | |
|          TEMP = TAU + ETA
 | |
|          IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
 | |
|             IF( W.LT.ZERO ) THEN
 | |
|                ETA = ( DLTUB-TAU ) / TWO
 | |
|             ELSE
 | |
|                ETA = ( DLTLB-TAU ) / TWO
 | |
|             END IF
 | |
|          END IF
 | |
|          DO 50 J = 1, N
 | |
|             DELTA( J ) = DELTA( J ) - ETA
 | |
|    50    CONTINUE
 | |
| *
 | |
|          TAU = TAU + ETA
 | |
| *
 | |
| *        Evaluate PSI and the derivative DPSI
 | |
| *
 | |
|          DPSI = ZERO
 | |
|          PSI = ZERO
 | |
|          ERRETM = ZERO
 | |
|          DO 60 J = 1, II
 | |
|             TEMP = Z( J ) / DELTA( J )
 | |
|             PSI = PSI + Z( J )*TEMP
 | |
|             DPSI = DPSI + TEMP*TEMP
 | |
|             ERRETM = ERRETM + PSI
 | |
|    60    CONTINUE
 | |
|          ERRETM = ABS( ERRETM )
 | |
| *
 | |
| *        Evaluate PHI and the derivative DPHI
 | |
| *
 | |
|          TEMP = Z( N ) / DELTA( N )
 | |
|          PHI = Z( N )*TEMP
 | |
|          DPHI = TEMP*TEMP
 | |
|          ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
 | |
|      $            ABS( TAU )*( DPSI+DPHI )
 | |
| *
 | |
|          W = RHOINV + PHI + PSI
 | |
| *
 | |
| *        Main loop to update the values of the array   DELTA
 | |
| *
 | |
|          ITER = NITER + 1
 | |
| *
 | |
|          DO 90 NITER = ITER, MAXIT
 | |
| *
 | |
| *           Test for convergence
 | |
| *
 | |
|             IF( ABS( W ).LE.EPS*ERRETM ) THEN
 | |
|                DLAM = D( I ) + TAU
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
|             IF( W.LE.ZERO ) THEN
 | |
|                DLTLB = MAX( DLTLB, TAU )
 | |
|             ELSE
 | |
|                DLTUB = MIN( DLTUB, TAU )
 | |
|             END IF
 | |
| *
 | |
| *           Calculate the new step
 | |
| *
 | |
|             C = W - DELTA( N-1 )*DPSI - DELTA( N )*DPHI
 | |
|             A = ( DELTA( N-1 )+DELTA( N ) )*W -
 | |
|      $          DELTA( N-1 )*DELTA( N )*( DPSI+DPHI )
 | |
|             B = DELTA( N-1 )*DELTA( N )*W
 | |
|             IF( A.GE.ZERO ) THEN
 | |
|                ETA = ( A+SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
 | |
|             ELSE
 | |
|                ETA = TWO*B / ( A-SQRT( ABS( A*A-FOUR*B*C ) ) )
 | |
|             END IF
 | |
| *
 | |
| *           Note, eta should be positive if w is negative, and
 | |
| *           eta should be negative otherwise. However,
 | |
| *           if for some reason caused by roundoff, eta*w > 0,
 | |
| *           we simply use one Newton step instead. This way
 | |
| *           will guarantee eta*w < 0.
 | |
| *
 | |
|             IF( W*ETA.GT.ZERO )
 | |
|      $         ETA = -W / ( DPSI+DPHI )
 | |
|             TEMP = TAU + ETA
 | |
|             IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
 | |
|                IF( W.LT.ZERO ) THEN
 | |
|                   ETA = ( DLTUB-TAU ) / TWO
 | |
|                ELSE
 | |
|                   ETA = ( DLTLB-TAU ) / TWO
 | |
|                END IF
 | |
|             END IF
 | |
|             DO 70 J = 1, N
 | |
|                DELTA( J ) = DELTA( J ) - ETA
 | |
|    70       CONTINUE
 | |
| *
 | |
|             TAU = TAU + ETA
 | |
| *
 | |
| *           Evaluate PSI and the derivative DPSI
 | |
| *
 | |
|             DPSI = ZERO
 | |
|             PSI = ZERO
 | |
|             ERRETM = ZERO
 | |
|             DO 80 J = 1, II
 | |
|                TEMP = Z( J ) / DELTA( J )
 | |
|                PSI = PSI + Z( J )*TEMP
 | |
|                DPSI = DPSI + TEMP*TEMP
 | |
|                ERRETM = ERRETM + PSI
 | |
|    80       CONTINUE
 | |
|             ERRETM = ABS( ERRETM )
 | |
| *
 | |
| *           Evaluate PHI and the derivative DPHI
 | |
| *
 | |
|             TEMP = Z( N ) / DELTA( N )
 | |
|             PHI = Z( N )*TEMP
 | |
|             DPHI = TEMP*TEMP
 | |
|             ERRETM = EIGHT*( -PHI-PSI ) + ERRETM - PHI + RHOINV +
 | |
|      $               ABS( TAU )*( DPSI+DPHI )
 | |
| *
 | |
|             W = RHOINV + PHI + PSI
 | |
|    90    CONTINUE
 | |
| *
 | |
| *        Return with INFO = 1, NITER = MAXIT and not converged
 | |
| *
 | |
|          INFO = 1
 | |
|          DLAM = D( I ) + TAU
 | |
|          GO TO 250
 | |
| *
 | |
| *        End for the case I = N
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        The case for I < N
 | |
| *
 | |
|          NITER = 1
 | |
|          IP1 = I + 1
 | |
| *
 | |
| *        Calculate initial guess
 | |
| *
 | |
|          DEL = D( IP1 ) - D( I )
 | |
|          MIDPT = DEL / TWO
 | |
|          DO 100 J = 1, N
 | |
|             DELTA( J ) = ( D( J )-D( I ) ) - MIDPT
 | |
|   100    CONTINUE
 | |
| *
 | |
|          PSI = ZERO
 | |
|          DO 110 J = 1, I - 1
 | |
|             PSI = PSI + Z( J )*Z( J ) / DELTA( J )
 | |
|   110    CONTINUE
 | |
| *
 | |
|          PHI = ZERO
 | |
|          DO 120 J = N, I + 2, -1
 | |
|             PHI = PHI + Z( J )*Z( J ) / DELTA( J )
 | |
|   120    CONTINUE
 | |
|          C = RHOINV + PSI + PHI
 | |
|          W = C + Z( I )*Z( I ) / DELTA( I ) +
 | |
|      $       Z( IP1 )*Z( IP1 ) / DELTA( IP1 )
 | |
| *
 | |
|          IF( W.GT.ZERO ) THEN
 | |
| *
 | |
| *           d(i)< the ith eigenvalue < (d(i)+d(i+1))/2
 | |
| *
 | |
| *           We choose d(i) as origin.
 | |
| *
 | |
|             ORGATI = .TRUE.
 | |
|             A = C*DEL + Z( I )*Z( I ) + Z( IP1 )*Z( IP1 )
 | |
|             B = Z( I )*Z( I )*DEL
 | |
|             IF( A.GT.ZERO ) THEN
 | |
|                TAU = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
 | |
|             ELSE
 | |
|                TAU = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
 | |
|             END IF
 | |
|             DLTLB = ZERO
 | |
|             DLTUB = MIDPT
 | |
|          ELSE
 | |
| *
 | |
| *           (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1)
 | |
| *
 | |
| *           We choose d(i+1) as origin.
 | |
| *
 | |
|             ORGATI = .FALSE.
 | |
|             A = C*DEL - Z( I )*Z( I ) - Z( IP1 )*Z( IP1 )
 | |
|             B = Z( IP1 )*Z( IP1 )*DEL
 | |
|             IF( A.LT.ZERO ) THEN
 | |
|                TAU = TWO*B / ( A-SQRT( ABS( A*A+FOUR*B*C ) ) )
 | |
|             ELSE
 | |
|                TAU = -( A+SQRT( ABS( A*A+FOUR*B*C ) ) ) / ( TWO*C )
 | |
|             END IF
 | |
|             DLTLB = -MIDPT
 | |
|             DLTUB = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( ORGATI ) THEN
 | |
|             DO 130 J = 1, N
 | |
|                DELTA( J ) = ( D( J )-D( I ) ) - TAU
 | |
|   130       CONTINUE
 | |
|          ELSE
 | |
|             DO 140 J = 1, N
 | |
|                DELTA( J ) = ( D( J )-D( IP1 ) ) - TAU
 | |
|   140       CONTINUE
 | |
|          END IF
 | |
|          IF( ORGATI ) THEN
 | |
|             II = I
 | |
|          ELSE
 | |
|             II = I + 1
 | |
|          END IF
 | |
|          IIM1 = II - 1
 | |
|          IIP1 = II + 1
 | |
| *
 | |
| *        Evaluate PSI and the derivative DPSI
 | |
| *
 | |
|          DPSI = ZERO
 | |
|          PSI = ZERO
 | |
|          ERRETM = ZERO
 | |
|          DO 150 J = 1, IIM1
 | |
|             TEMP = Z( J ) / DELTA( J )
 | |
|             PSI = PSI + Z( J )*TEMP
 | |
|             DPSI = DPSI + TEMP*TEMP
 | |
|             ERRETM = ERRETM + PSI
 | |
|   150    CONTINUE
 | |
|          ERRETM = ABS( ERRETM )
 | |
| *
 | |
| *        Evaluate PHI and the derivative DPHI
 | |
| *
 | |
|          DPHI = ZERO
 | |
|          PHI = ZERO
 | |
|          DO 160 J = N, IIP1, -1
 | |
|             TEMP = Z( J ) / DELTA( J )
 | |
|             PHI = PHI + Z( J )*TEMP
 | |
|             DPHI = DPHI + TEMP*TEMP
 | |
|             ERRETM = ERRETM + PHI
 | |
|   160    CONTINUE
 | |
| *
 | |
|          W = RHOINV + PHI + PSI
 | |
| *
 | |
| *        W is the value of the secular function with
 | |
| *        its ii-th element removed.
 | |
| *
 | |
|          SWTCH3 = .FALSE.
 | |
|          IF( ORGATI ) THEN
 | |
|             IF( W.LT.ZERO )
 | |
|      $         SWTCH3 = .TRUE.
 | |
|          ELSE
 | |
|             IF( W.GT.ZERO )
 | |
|      $         SWTCH3 = .TRUE.
 | |
|          END IF
 | |
|          IF( II.EQ.1 .OR. II.EQ.N )
 | |
|      $      SWTCH3 = .FALSE.
 | |
| *
 | |
|          TEMP = Z( II ) / DELTA( II )
 | |
|          DW = DPSI + DPHI + TEMP*TEMP
 | |
|          TEMP = Z( II )*TEMP
 | |
|          W = W + TEMP
 | |
|          ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
 | |
|      $            THREE*ABS( TEMP ) + ABS( TAU )*DW
 | |
| *
 | |
| *        Test for convergence
 | |
| *
 | |
|          IF( ABS( W ).LE.EPS*ERRETM ) THEN
 | |
|             IF( ORGATI ) THEN
 | |
|                DLAM = D( I ) + TAU
 | |
|             ELSE
 | |
|                DLAM = D( IP1 ) + TAU
 | |
|             END IF
 | |
|             GO TO 250
 | |
|          END IF
 | |
| *
 | |
|          IF( W.LE.ZERO ) THEN
 | |
|             DLTLB = MAX( DLTLB, TAU )
 | |
|          ELSE
 | |
|             DLTUB = MIN( DLTUB, TAU )
 | |
|          END IF
 | |
| *
 | |
| *        Calculate the new step
 | |
| *
 | |
|          NITER = NITER + 1
 | |
|          IF( .NOT.SWTCH3 ) THEN
 | |
|             IF( ORGATI ) THEN
 | |
|                C = W - DELTA( IP1 )*DW - ( D( I )-D( IP1 ) )*
 | |
|      $             ( Z( I ) / DELTA( I ) )**2
 | |
|             ELSE
 | |
|                C = W - DELTA( I )*DW - ( D( IP1 )-D( I ) )*
 | |
|      $             ( Z( IP1 ) / DELTA( IP1 ) )**2
 | |
|             END IF
 | |
|             A = ( DELTA( I )+DELTA( IP1 ) )*W -
 | |
|      $          DELTA( I )*DELTA( IP1 )*DW
 | |
|             B = DELTA( I )*DELTA( IP1 )*W
 | |
|             IF( C.EQ.ZERO ) THEN
 | |
|                IF( A.EQ.ZERO ) THEN
 | |
|                   IF( ORGATI ) THEN
 | |
|                      A = Z( I )*Z( I ) + DELTA( IP1 )*DELTA( IP1 )*
 | |
|      $                   ( DPSI+DPHI )
 | |
|                   ELSE
 | |
|                      A = Z( IP1 )*Z( IP1 ) + DELTA( I )*DELTA( I )*
 | |
|      $                   ( DPSI+DPHI )
 | |
|                   END IF
 | |
|                END IF
 | |
|                ETA = B / A
 | |
|             ELSE IF( A.LE.ZERO ) THEN
 | |
|                ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
 | |
|             ELSE
 | |
|                ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           Interpolation using THREE most relevant poles
 | |
| *
 | |
|             TEMP = RHOINV + PSI + PHI
 | |
|             IF( ORGATI ) THEN
 | |
|                TEMP1 = Z( IIM1 ) / DELTA( IIM1 )
 | |
|                TEMP1 = TEMP1*TEMP1
 | |
|                C = TEMP - DELTA( IIP1 )*( DPSI+DPHI ) -
 | |
|      $             ( D( IIM1 )-D( IIP1 ) )*TEMP1
 | |
|                ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
 | |
|                ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*
 | |
|      $                   ( ( DPSI-TEMP1 )+DPHI )
 | |
|             ELSE
 | |
|                TEMP1 = Z( IIP1 ) / DELTA( IIP1 )
 | |
|                TEMP1 = TEMP1*TEMP1
 | |
|                C = TEMP - DELTA( IIM1 )*( DPSI+DPHI ) -
 | |
|      $             ( D( IIP1 )-D( IIM1 ) )*TEMP1
 | |
|                ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*
 | |
|      $                   ( DPSI+( DPHI-TEMP1 ) )
 | |
|                ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
 | |
|             END IF
 | |
|             ZZ( 2 ) = Z( II )*Z( II )
 | |
|             CALL DLAED6( NITER, ORGATI, C, DELTA( IIM1 ), ZZ, W, ETA,
 | |
|      $                   INFO )
 | |
|             IF( INFO.NE.0 )
 | |
|      $         GO TO 250
 | |
|          END IF
 | |
| *
 | |
| *        Note, eta should be positive if w is negative, and
 | |
| *        eta should be negative otherwise. However,
 | |
| *        if for some reason caused by roundoff, eta*w > 0,
 | |
| *        we simply use one Newton step instead. This way
 | |
| *        will guarantee eta*w < 0.
 | |
| *
 | |
|          IF( W*ETA.GE.ZERO )
 | |
|      $      ETA = -W / DW
 | |
|          TEMP = TAU + ETA
 | |
|          IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
 | |
|             IF( W.LT.ZERO ) THEN
 | |
|                ETA = ( DLTUB-TAU ) / TWO
 | |
|             ELSE
 | |
|                ETA = ( DLTLB-TAU ) / TWO
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          PREW = W
 | |
| *
 | |
|          DO 180 J = 1, N
 | |
|             DELTA( J ) = DELTA( J ) - ETA
 | |
|   180    CONTINUE
 | |
| *
 | |
| *        Evaluate PSI and the derivative DPSI
 | |
| *
 | |
|          DPSI = ZERO
 | |
|          PSI = ZERO
 | |
|          ERRETM = ZERO
 | |
|          DO 190 J = 1, IIM1
 | |
|             TEMP = Z( J ) / DELTA( J )
 | |
|             PSI = PSI + Z( J )*TEMP
 | |
|             DPSI = DPSI + TEMP*TEMP
 | |
|             ERRETM = ERRETM + PSI
 | |
|   190    CONTINUE
 | |
|          ERRETM = ABS( ERRETM )
 | |
| *
 | |
| *        Evaluate PHI and the derivative DPHI
 | |
| *
 | |
|          DPHI = ZERO
 | |
|          PHI = ZERO
 | |
|          DO 200 J = N, IIP1, -1
 | |
|             TEMP = Z( J ) / DELTA( J )
 | |
|             PHI = PHI + Z( J )*TEMP
 | |
|             DPHI = DPHI + TEMP*TEMP
 | |
|             ERRETM = ERRETM + PHI
 | |
|   200    CONTINUE
 | |
| *
 | |
|          TEMP = Z( II ) / DELTA( II )
 | |
|          DW = DPSI + DPHI + TEMP*TEMP
 | |
|          TEMP = Z( II )*TEMP
 | |
|          W = RHOINV + PHI + PSI + TEMP
 | |
|          ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
 | |
|      $            THREE*ABS( TEMP ) + ABS( TAU+ETA )*DW
 | |
| *
 | |
|          SWTCH = .FALSE.
 | |
|          IF( ORGATI ) THEN
 | |
|             IF( -W.GT.ABS( PREW ) / TEN )
 | |
|      $         SWTCH = .TRUE.
 | |
|          ELSE
 | |
|             IF( W.GT.ABS( PREW ) / TEN )
 | |
|      $         SWTCH = .TRUE.
 | |
|          END IF
 | |
| *
 | |
|          TAU = TAU + ETA
 | |
| *
 | |
| *        Main loop to update the values of the array   DELTA
 | |
| *
 | |
|          ITER = NITER + 1
 | |
| *
 | |
|          DO 240 NITER = ITER, MAXIT
 | |
| *
 | |
| *           Test for convergence
 | |
| *
 | |
|             IF( ABS( W ).LE.EPS*ERRETM ) THEN
 | |
|                IF( ORGATI ) THEN
 | |
|                   DLAM = D( I ) + TAU
 | |
|                ELSE
 | |
|                   DLAM = D( IP1 ) + TAU
 | |
|                END IF
 | |
|                GO TO 250
 | |
|             END IF
 | |
| *
 | |
|             IF( W.LE.ZERO ) THEN
 | |
|                DLTLB = MAX( DLTLB, TAU )
 | |
|             ELSE
 | |
|                DLTUB = MIN( DLTUB, TAU )
 | |
|             END IF
 | |
| *
 | |
| *           Calculate the new step
 | |
| *
 | |
|             IF( .NOT.SWTCH3 ) THEN
 | |
|                IF( .NOT.SWTCH ) THEN
 | |
|                   IF( ORGATI ) THEN
 | |
|                      C = W - DELTA( IP1 )*DW -
 | |
|      $                   ( D( I )-D( IP1 ) )*( Z( I ) / DELTA( I ) )**2
 | |
|                   ELSE
 | |
|                      C = W - DELTA( I )*DW - ( D( IP1 )-D( I ) )*
 | |
|      $                   ( Z( IP1 ) / DELTA( IP1 ) )**2
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   TEMP = Z( II ) / DELTA( II )
 | |
|                   IF( ORGATI ) THEN
 | |
|                      DPSI = DPSI + TEMP*TEMP
 | |
|                   ELSE
 | |
|                      DPHI = DPHI + TEMP*TEMP
 | |
|                   END IF
 | |
|                   C = W - DELTA( I )*DPSI - DELTA( IP1 )*DPHI
 | |
|                END IF
 | |
|                A = ( DELTA( I )+DELTA( IP1 ) )*W -
 | |
|      $             DELTA( I )*DELTA( IP1 )*DW
 | |
|                B = DELTA( I )*DELTA( IP1 )*W
 | |
|                IF( C.EQ.ZERO ) THEN
 | |
|                   IF( A.EQ.ZERO ) THEN
 | |
|                      IF( .NOT.SWTCH ) THEN
 | |
|                         IF( ORGATI ) THEN
 | |
|                            A = Z( I )*Z( I ) + DELTA( IP1 )*
 | |
|      $                         DELTA( IP1 )*( DPSI+DPHI )
 | |
|                         ELSE
 | |
|                            A = Z( IP1 )*Z( IP1 ) +
 | |
|      $                         DELTA( I )*DELTA( I )*( DPSI+DPHI )
 | |
|                         END IF
 | |
|                      ELSE
 | |
|                         A = DELTA( I )*DELTA( I )*DPSI +
 | |
|      $                      DELTA( IP1 )*DELTA( IP1 )*DPHI
 | |
|                      END IF
 | |
|                   END IF
 | |
|                   ETA = B / A
 | |
|                ELSE IF( A.LE.ZERO ) THEN
 | |
|                   ETA = ( A-SQRT( ABS( A*A-FOUR*B*C ) ) ) / ( TWO*C )
 | |
|                ELSE
 | |
|                   ETA = TWO*B / ( A+SQRT( ABS( A*A-FOUR*B*C ) ) )
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              Interpolation using THREE most relevant poles
 | |
| *
 | |
|                TEMP = RHOINV + PSI + PHI
 | |
|                IF( SWTCH ) THEN
 | |
|                   C = TEMP - DELTA( IIM1 )*DPSI - DELTA( IIP1 )*DPHI
 | |
|                   ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*DPSI
 | |
|                   ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*DPHI
 | |
|                ELSE
 | |
|                   IF( ORGATI ) THEN
 | |
|                      TEMP1 = Z( IIM1 ) / DELTA( IIM1 )
 | |
|                      TEMP1 = TEMP1*TEMP1
 | |
|                      C = TEMP - DELTA( IIP1 )*( DPSI+DPHI ) -
 | |
|      $                   ( D( IIM1 )-D( IIP1 ) )*TEMP1
 | |
|                      ZZ( 1 ) = Z( IIM1 )*Z( IIM1 )
 | |
|                      ZZ( 3 ) = DELTA( IIP1 )*DELTA( IIP1 )*
 | |
|      $                         ( ( DPSI-TEMP1 )+DPHI )
 | |
|                   ELSE
 | |
|                      TEMP1 = Z( IIP1 ) / DELTA( IIP1 )
 | |
|                      TEMP1 = TEMP1*TEMP1
 | |
|                      C = TEMP - DELTA( IIM1 )*( DPSI+DPHI ) -
 | |
|      $                   ( D( IIP1 )-D( IIM1 ) )*TEMP1
 | |
|                      ZZ( 1 ) = DELTA( IIM1 )*DELTA( IIM1 )*
 | |
|      $                         ( DPSI+( DPHI-TEMP1 ) )
 | |
|                      ZZ( 3 ) = Z( IIP1 )*Z( IIP1 )
 | |
|                   END IF
 | |
|                END IF
 | |
|                CALL DLAED6( NITER, ORGATI, C, DELTA( IIM1 ), ZZ, W, ETA,
 | |
|      $                      INFO )
 | |
|                IF( INFO.NE.0 )
 | |
|      $            GO TO 250
 | |
|             END IF
 | |
| *
 | |
| *           Note, eta should be positive if w is negative, and
 | |
| *           eta should be negative otherwise. However,
 | |
| *           if for some reason caused by roundoff, eta*w > 0,
 | |
| *           we simply use one Newton step instead. This way
 | |
| *           will guarantee eta*w < 0.
 | |
| *
 | |
|             IF( W*ETA.GE.ZERO )
 | |
|      $         ETA = -W / DW
 | |
|             TEMP = TAU + ETA
 | |
|             IF( TEMP.GT.DLTUB .OR. TEMP.LT.DLTLB ) THEN
 | |
|                IF( W.LT.ZERO ) THEN
 | |
|                   ETA = ( DLTUB-TAU ) / TWO
 | |
|                ELSE
 | |
|                   ETA = ( DLTLB-TAU ) / TWO
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             DO 210 J = 1, N
 | |
|                DELTA( J ) = DELTA( J ) - ETA
 | |
|   210       CONTINUE
 | |
| *
 | |
|             TAU = TAU + ETA
 | |
|             PREW = W
 | |
| *
 | |
| *           Evaluate PSI and the derivative DPSI
 | |
| *
 | |
|             DPSI = ZERO
 | |
|             PSI = ZERO
 | |
|             ERRETM = ZERO
 | |
|             DO 220 J = 1, IIM1
 | |
|                TEMP = Z( J ) / DELTA( J )
 | |
|                PSI = PSI + Z( J )*TEMP
 | |
|                DPSI = DPSI + TEMP*TEMP
 | |
|                ERRETM = ERRETM + PSI
 | |
|   220       CONTINUE
 | |
|             ERRETM = ABS( ERRETM )
 | |
| *
 | |
| *           Evaluate PHI and the derivative DPHI
 | |
| *
 | |
|             DPHI = ZERO
 | |
|             PHI = ZERO
 | |
|             DO 230 J = N, IIP1, -1
 | |
|                TEMP = Z( J ) / DELTA( J )
 | |
|                PHI = PHI + Z( J )*TEMP
 | |
|                DPHI = DPHI + TEMP*TEMP
 | |
|                ERRETM = ERRETM + PHI
 | |
|   230       CONTINUE
 | |
| *
 | |
|             TEMP = Z( II ) / DELTA( II )
 | |
|             DW = DPSI + DPHI + TEMP*TEMP
 | |
|             TEMP = Z( II )*TEMP
 | |
|             W = RHOINV + PHI + PSI + TEMP
 | |
|             ERRETM = EIGHT*( PHI-PSI ) + ERRETM + TWO*RHOINV +
 | |
|      $               THREE*ABS( TEMP ) + ABS( TAU )*DW
 | |
|             IF( W*PREW.GT.ZERO .AND. ABS( W ).GT.ABS( PREW ) / TEN )
 | |
|      $         SWTCH = .NOT.SWTCH
 | |
| *
 | |
|   240    CONTINUE
 | |
| *
 | |
| *        Return with INFO = 1, NITER = MAXIT and not converged
 | |
| *
 | |
|          INFO = 1
 | |
|          IF( ORGATI ) THEN
 | |
|             DLAM = D( I ) + TAU
 | |
|          ELSE
 | |
|             DLAM = D( IP1 ) + TAU
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|   250 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLAED4
 | |
| *
 | |
|       END
 |