162 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			C
		
	
	
	
| /*******************************************************************************
 | |
| *  Copyright (C) 2009-2011 Intel Corporation. All Rights Reserved.
 | |
| *  The information and material ("Material") provided below is owned by Intel
 | |
| *  Corporation or its suppliers or licensors, and title to such Material remains
 | |
| *  with Intel Corporation or its suppliers or licensors. The Material contains
 | |
| *  proprietary information of Intel or its suppliers and licensors. The Material
 | |
| *  is protected by worldwide copyright laws and treaty provisions. No part of
 | |
| *  the Material may be copied, reproduced, published, uploaded, posted,
 | |
| *  transmitted, or distributed in any way without Intel's prior express written
 | |
| *  permission. No license under any patent, copyright or other intellectual
 | |
| *  property rights in the Material is granted to or conferred upon you, either
 | |
| *  expressly, by implication, inducement, estoppel or otherwise. Any license
 | |
| *  under such intellectual property rights must be express and approved by Intel
 | |
| *  in writing.
 | |
| *
 | |
| ********************************************************************************
 | |
| */
 | |
| /*
 | |
|    LAPACKE_zgesv Example.
 | |
|    ======================
 | |
|  
 | |
|    The program computes the solution to the system of linear
 | |
|    equations with a square matrix A and multiple
 | |
|    right-hand sides B, where A is the coefficient matrix:
 | |
|  
 | |
|    (  1.23, -5.50) (  7.91, -5.38) ( -9.80, -4.86) ( -7.32,  7.57) 
 | |
|    ( -2.14, -1.12) ( -9.92, -0.79) ( -9.18, -1.12) (  1.37,  0.43) 
 | |
|    ( -4.30, -7.10) ( -6.47,  2.52) ( -6.51, -2.67) ( -5.86,  7.38) 
 | |
|    (  1.27,  7.29) (  8.90,  6.92) ( -8.82,  1.25) (  5.41,  5.37) 
 | |
| 
 | |
|    and B is the right-hand side matrix:
 | |
|  
 | |
|    (  8.33, -7.32) ( -6.11, -3.81) 
 | |
|    ( -6.18, -4.80) (  0.14, -7.71) 
 | |
|    ( -5.71, -2.80) (  1.41,  3.40) 
 | |
|    ( -1.60,  3.08) (  8.54, -4.05) 
 | |
|  
 | |
|    Description.
 | |
|    ============
 | |
|  
 | |
|    The routine solves for X the system of linear equations A*X = B, 
 | |
|    where A is an n-by-n matrix, the columns of matrix B are individual 
 | |
|    right-hand sides, and the columns of X are the corresponding 
 | |
|    solutions.
 | |
| 
 | |
|    The LU decomposition with partial pivoting and row interchanges is 
 | |
|    used to factor A as A = P*L*U, where P is a permutation matrix, L 
 | |
|    is unit lower triangular, and U is upper triangular. The factored 
 | |
|    form of A is then used to solve the system of equations A*X = B.
 | |
| 
 | |
|    Example Program Results.
 | |
|    ========================
 | |
|  
 | |
|  LAPACKE_zgesv (row-major, high-level) Example Program Results
 | |
| 
 | |
|  Solution
 | |
|  ( -1.09, -0.18) (  1.28,  1.21)
 | |
|  (  0.97,  0.52) ( -0.22, -0.97)
 | |
|  ( -0.20,  0.19) (  0.53,  1.36)
 | |
|  ( -0.59,  0.92) (  2.22, -1.00)
 | |
| 
 | |
|  Details of LU factorization
 | |
|  ( -4.30, -7.10) ( -6.47,  2.52) ( -6.51, -2.67) ( -5.86,  7.38)
 | |
|  (  0.49,  0.47) ( 12.26, -3.57) ( -7.87, -0.49) ( -0.98,  6.71)
 | |
|  (  0.25, -0.15) ( -0.60, -0.37) (-11.70, -4.64) ( -1.35,  1.38)
 | |
|  ( -0.83, -0.32) (  0.05,  0.58) (  0.93, -0.50) (  2.66,  7.86)
 | |
| 
 | |
|  Pivot indices
 | |
|       3      3      3      4
 | |
| */
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include "lapacke.h"
 | |
| 
 | |
| /* Auxiliary routines prototypes */
 | |
| extern void print_matrix( char* desc, lapack_int m, lapack_int n, lapack_complex_double* a, lapack_int lda );
 | |
| extern void print_int_vector( char* desc, lapack_int n, lapack_int* a );
 | |
| 
 | |
| /* Parameters */
 | |
| #define N 4
 | |
| #define NRHS 2
 | |
| #define LDA N
 | |
| #define LDB NRHS
 | |
| 
 | |
| /* Main program */
 | |
| int main() {
 | |
|         /* Locals */
 | |
|         lapack_int n = N, nrhs = NRHS, lda = LDA, ldb = LDB, info;
 | |
|         /* Local arrays */
 | |
|         lapack_int ipiv[N];
 | |
|         lapack_complex_double a[LDA*N];
 | |
|         lapack_complex_double b[LDB*N];
 | |
| 		a[0] = lapack_make_complex_double( 1.23, -5.50);
 | |
| 		a[1] = lapack_make_complex_double( 7.91, -5.38);
 | |
| 		a[2] = lapack_make_complex_double(-9.80, -4.86);
 | |
| 		a[3] = lapack_make_complex_double(-7.32,  7.57);
 | |
| 		a[4] = lapack_make_complex_double(-2.14, -1.12);
 | |
| 		a[5] = lapack_make_complex_double(-9.92, -0.79);
 | |
| 		a[6] = lapack_make_complex_double(-9.18, -1.12);
 | |
| 		a[7] = lapack_make_complex_double( 1.37,  0.43);
 | |
| 		a[8] = lapack_make_complex_double(-4.30, -7.10);
 | |
| 		a[9] = lapack_make_complex_double(-6.47,  2.52);
 | |
| 		a[10] = lapack_make_complex_double(-6.51, -2.67);
 | |
| 		a[11] = lapack_make_complex_double(-5.86,  7.38);
 | |
| 		a[12] = lapack_make_complex_double( 1.27,  7.29);
 | |
| 		a[13] = lapack_make_complex_double( 8.90,  6.92);
 | |
| 		a[14] = lapack_make_complex_double(-8.82,  1.25);
 | |
| 		a[15] = lapack_make_complex_double( 5.41,  5.37);
 | |
| 		
 | |
| 		b[0] = lapack_make_complex_double( 8.33, -7.32);
 | |
| 		b[1] = lapack_make_complex_double(-6.11, -3.81);
 | |
| 		b[2] = lapack_make_complex_double(-6.18, -4.80);
 | |
| 		b[3] = lapack_make_complex_double( 0.14, -7.71);
 | |
|         b[4] = lapack_make_complex_double(-5.71, -2.80);
 | |
| 		b[5] = lapack_make_complex_double( 1.41,  3.40);
 | |
|         b[6] = lapack_make_complex_double(-1.60,  3.08);
 | |
| 		b[7] = lapack_make_complex_double( 8.54, -4.05);
 | |
|      
 | |
|         /* Print Entry Matrix */
 | |
|         print_matrix( "Entry Matrix A", n, n, a, lda );
 | |
|         /* Print Right Rand Side */
 | |
|         print_matrix( "Right Rand Side", n, nrhs, b, ldb );
 | |
|         printf( "\n" );
 | |
|         /* Executable statements */
 | |
|         printf( "LAPACKE_zgesv (row-major, high-level) Example Program Results\n" );
 | |
|         /* Solve the equations A*X = B */
 | |
|         info = LAPACKE_zgesv( LAPACK_ROW_MAJOR, n, nrhs, a, lda, ipiv, b, ldb );
 | |
|         /* Check for the exact singularity */
 | |
|         if( info > 0 ) {
 | |
|                 printf( "The diagonal element of the triangular factor of A,\n" );
 | |
|                 printf( "U(%i,%i) is zero, so that A is singular;\n", info, info );
 | |
|                 printf( "the solution could not be computed.\n" );
 | |
|                 exit( 1 );
 | |
|         }
 | |
|         /* Print solution */
 | |
|         print_matrix( "Solution", n, nrhs, b, ldb );
 | |
|         /* Print details of LU factorization */
 | |
|         print_matrix( "Details of LU factorization", n, n, a, lda );
 | |
|         /* Print pivot indices */
 | |
|         print_int_vector( "Pivot indices", n, ipiv );
 | |
|         exit( 0 );
 | |
| } /* End of LAPACKE_zgesv Example */
 | |
| 
 | |
| /* Auxiliary routine: printing a matrix */
 | |
| void print_matrix( char* desc, lapack_int m, lapack_int n, lapack_complex_double* a, lapack_int lda ) {
 | |
|         lapack_int i, j;
 | |
|         printf( "\n %s\n", desc );
 | |
|         for( i = 0; i < m; i++ ) {
 | |
|                 for( j = 0; j < n; j++ )
 | |
|                         printf( " (%6.2f,%6.2f)", lapack_complex_double_real(a[i*lda+j]), lapack_complex_double_imag(a[i*lda+j]) );
 | |
|                 printf( "\n" );
 | |
|         }
 | |
| }
 | |
| 
 | |
| /* Auxiliary routine: printing a vector of integers */
 | |
| void print_int_vector( char* desc, lapack_int n, lapack_int* a ) {
 | |
|         lapack_int j;
 | |
|         printf( "\n %s\n", desc );
 | |
|         for( j = 0; j < n; j++ ) printf( " %6i", a[j] );
 | |
|         printf( "\n" );
 | |
| }
 |