335 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			335 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGRQTS
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
 | 
						|
*                          BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDB, LWORK, M, P, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), AF( LDA, * ), R( LDA, * ),
 | 
						|
*      $                   Q( LDA, * ),
 | 
						|
*      $                   B( LDB, * ), BF( LDB, * ), T( LDB, * ),
 | 
						|
*      $                   Z( LDB, * ), BWK( LDB, * ),
 | 
						|
*      $                   TAUA( * ), TAUB( * ),
 | 
						|
*      $                   RESULT( 4 ), RWORK( * ), WORK( LWORK )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGRQTS tests SGGRQF, which computes the GRQ factorization of an
 | 
						|
*> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is INTEGER
 | 
						|
*>          The number of rows of the matrix B.  P >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrices A and B.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The M-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AF
 | 
						|
*> \verbatim
 | 
						|
*>          AF is REAL array, dimension (LDA,N)
 | 
						|
*>          Details of the GRQ factorization of A and B, as returned
 | 
						|
*>          by SGGRQF, see SGGRQF for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is REAL array, dimension (LDA,N)
 | 
						|
*>          The N-by-N orthogonal matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] R
 | 
						|
*> \verbatim
 | 
						|
*>          R is REAL array, dimension (LDA,MAX(M,N))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the arrays A, AF, R and Q.
 | 
						|
*>          LDA >= max(M,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAUA
 | 
						|
*> \verbatim
 | 
						|
*>          TAUA is REAL array, dimension (min(M,N))
 | 
						|
*>          The scalar factors of the elementary reflectors, as returned
 | 
						|
*>          by SGGQRC.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB,N)
 | 
						|
*>          On entry, the P-by-N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BF
 | 
						|
*> \verbatim
 | 
						|
*>          BF is REAL array, dimension (LDB,N)
 | 
						|
*>          Details of the GQR factorization of A and B, as returned
 | 
						|
*>          by SGGRQF, see SGGRQF for further details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension (LDB,P)
 | 
						|
*>          The P-by-P orthogonal matrix Z.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is REAL array, dimension (LDB,max(P,N))
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BWK
 | 
						|
*> \verbatim
 | 
						|
*>          BWK is REAL array, dimension (LDB,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the arrays B, BF, Z and T.
 | 
						|
*>          LDB >= max(P,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAUB
 | 
						|
*> \verbatim
 | 
						|
*>          TAUB is REAL array, dimension (min(P,N))
 | 
						|
*>          The scalar factors of the elementary reflectors, as returned
 | 
						|
*>          by SGGRQF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK, LWORK >= max(M,P,N)**2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (4)
 | 
						|
*>          The test ratios:
 | 
						|
*>            RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
 | 
						|
*>            RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
 | 
						|
*>            RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
 | 
						|
*>            RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
 | 
						|
     $                   BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDB, LWORK, M, P, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), AF( LDA, * ), R( LDA, * ),
 | 
						|
     $                   Q( LDA, * ),
 | 
						|
     $                   B( LDB, * ), BF( LDB, * ), T( LDB, * ),
 | 
						|
     $                   Z( LDB, * ), BWK( LDB, * ),
 | 
						|
     $                   TAUA( * ), TAUB( * ),
 | 
						|
     $                   RESULT( 4 ), RWORK( * ), WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      REAL               ROGUE
 | 
						|
      PARAMETER          ( ROGUE = -1.0E+10 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            INFO
 | 
						|
      REAL               ANORM, BNORM, ULP, UNFL, RESID
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH, SLANGE, SLANSY
 | 
						|
      EXTERNAL           SLAMCH, SLANGE, SLANSY
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMM, SGGRQF, SLACPY, SLASET, SORGQR,
 | 
						|
     $                   SORGRQ, SSYRK
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      ULP = SLAMCH( 'Precision' )
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
*
 | 
						|
*     Copy the matrix A to the array AF.
 | 
						|
*
 | 
						|
      CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
 | 
						|
      CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB )
 | 
						|
*
 | 
						|
      ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
 | 
						|
      BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
 | 
						|
*
 | 
						|
*     Factorize the matrices A and B in the arrays AF and BF.
 | 
						|
*
 | 
						|
      CALL SGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
 | 
						|
     $             LWORK, INFO )
 | 
						|
*
 | 
						|
*     Generate the N-by-N matrix Q
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
 | 
						|
      IF( M.LE.N ) THEN
 | 
						|
         IF( M.GT.0 .AND. M.LT.N )
 | 
						|
     $      CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
 | 
						|
         IF( M.GT.1 )
 | 
						|
     $      CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
 | 
						|
     $                   Q( N-M+2, N-M+1 ), LDA )
 | 
						|
      ELSE
 | 
						|
         IF( N.GT.1 )
 | 
						|
     $      CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
 | 
						|
     $                   Q( 2, 1 ), LDA )
 | 
						|
      END IF
 | 
						|
      CALL SORGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*     Generate the P-by-P matrix Z
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
 | 
						|
      IF( P.GT.1 )
 | 
						|
     $   CALL SLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB )
 | 
						|
      CALL SORGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO )
 | 
						|
*
 | 
						|
*     Copy R
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
 | 
						|
      IF( M.LE.N )THEN
 | 
						|
         CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ),
 | 
						|
     $                LDA )
 | 
						|
      ELSE
 | 
						|
         CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
 | 
						|
         CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ),
 | 
						|
     $                LDA )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Copy T
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', P, N, ZERO, ZERO, T, LDB )
 | 
						|
      CALL SLACPY( 'Upper', P, N, BF, LDB, T, LDB )
 | 
						|
*
 | 
						|
*     Compute R - A*Q'
 | 
						|
*
 | 
						|
      CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
 | 
						|
     $            LDA, ONE, R, LDA )
 | 
						|
*
 | 
						|
*     Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) .
 | 
						|
*
 | 
						|
      RESID = SLANGE( '1', M, N, R, LDA, RWORK )
 | 
						|
      IF( ANORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP
 | 
						|
      ELSE
 | 
						|
         RESULT( 1 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute T*Q - Z'*B
 | 
						|
*
 | 
						|
      CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, Z, LDB, B,
 | 
						|
     $            LDB, ZERO, BWK, LDB )
 | 
						|
      CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, T, LDB,
 | 
						|
     $            Q, LDA, -ONE, BWK, LDB )
 | 
						|
*
 | 
						|
*     Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
 | 
						|
*
 | 
						|
      RESID = SLANGE( '1', P, N, BWK, LDB, RWORK )
 | 
						|
      IF( BNORM.GT.ZERO ) THEN
 | 
						|
         RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP
 | 
						|
      ELSE
 | 
						|
         RESULT( 2 ) = ZERO
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute I - Q*Q'
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
 | 
						|
      CALL SSYRK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R,
 | 
						|
     $            LDA )
 | 
						|
*
 | 
						|
*     Compute norm( I - Q'*Q ) / ( N * ULP ) .
 | 
						|
*
 | 
						|
      RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
 | 
						|
      RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP
 | 
						|
*
 | 
						|
*     Compute I - Z'*Z
 | 
						|
*
 | 
						|
      CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
 | 
						|
      CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
 | 
						|
     $            LDB )
 | 
						|
*
 | 
						|
*     Compute norm( I - Z'*Z ) / ( P*ULP ) .
 | 
						|
*
 | 
						|
      RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
 | 
						|
      RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGRQTS
 | 
						|
*
 | 
						|
      END
 |