250 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			250 lines
		
	
	
		
			6.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGET54
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
 | 
						|
*                          LDV, WORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDB, LDS, LDT, LDU, LDV, N
 | 
						|
*       DOUBLE PRECISION   RESULT
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( LDS, * ),
 | 
						|
*      $                   T( LDT, * ), U( LDU, * ), V( LDV, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGET54 checks a generalized decomposition of the form
 | 
						|
*>
 | 
						|
*>          A = U*S*V'  and B = U*T* V'
 | 
						|
*>
 | 
						|
*> where ' means transpose and U and V are orthogonal.
 | 
						|
*>
 | 
						|
*> Specifically,
 | 
						|
*>
 | 
						|
*>  RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The size of the matrix.  If it is zero, DGET54 does nothing.
 | 
						|
*>          It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA, N)
 | 
						|
*>          The original (unfactored) matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB, N)
 | 
						|
*>          The original (unfactored) matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (LDS, N)
 | 
						|
*>          The factored matrix S.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDS
 | 
						|
*> \verbatim
 | 
						|
*>          LDS is INTEGER
 | 
						|
*>          The leading dimension of S.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is DOUBLE PRECISION array, dimension (LDT, N)
 | 
						|
*>          The factored matrix T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of T.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] U
 | 
						|
*> \verbatim
 | 
						|
*>          U is DOUBLE PRECISION array, dimension (LDU, N)
 | 
						|
*>          The orthogonal matrix on the left-hand side in the
 | 
						|
*>          decomposition.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDU
 | 
						|
*> \verbatim
 | 
						|
*>          LDU is INTEGER
 | 
						|
*>          The leading dimension of U.  LDU must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is DOUBLE PRECISION array, dimension (LDV, N)
 | 
						|
*>          The orthogonal matrix on the left-hand side in the
 | 
						|
*>          decomposition.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDV
 | 
						|
*> \verbatim
 | 
						|
*>          LDV is INTEGER
 | 
						|
*>          The leading dimension of V.  LDV must be at least N and
 | 
						|
*>          at least 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (3*N**2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is DOUBLE PRECISION
 | 
						|
*>          The value RESULT, It is currently limited to 1/ulp, to
 | 
						|
*>          avoid overflow. Errors are flagged by RESULT=10/ulp.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
 | 
						|
     $                   LDV, WORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDB, LDS, LDT, LDU, LDV, N
 | 
						|
      DOUBLE PRECISION   RESULT
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( LDS, * ),
 | 
						|
     $                   T( LDT, * ), U( LDU, * ), V( LDV, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION   ABNORM, ULP, UNFL, WNORM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      DOUBLE PRECISION   DUM( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANGE
 | 
						|
      EXTERNAL           DLAMCH, DLANGE
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DGEMM, DLACPY
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE, MAX, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RESULT = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Constants
 | 
						|
*
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
 | 
						|
*
 | 
						|
*     compute the norm of (A,B)
 | 
						|
*
 | 
						|
      CALL DLACPY( 'Full', N, N, A, LDA, WORK, N )
 | 
						|
      CALL DLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
 | 
						|
      ABNORM = MAX( DLANGE( '1', N, 2*N, WORK, N, DUM ), UNFL )
 | 
						|
*
 | 
						|
*     Compute W1 = A - U*S*V', and put in the array WORK(1:N*N)
 | 
						|
*
 | 
						|
      CALL DLACPY( ' ', N, N, A, LDA, WORK, N )
 | 
						|
      CALL DGEMM( 'N', 'N', N, N, N, ONE, U, LDU, S, LDS, ZERO,
 | 
						|
     $            WORK( N*N+1 ), N )
 | 
						|
*
 | 
						|
      CALL DGEMM( 'N', 'C', N, N, N, -ONE, WORK( N*N+1 ), N, V, LDV,
 | 
						|
     $            ONE, WORK, N )
 | 
						|
*
 | 
						|
*     Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N)
 | 
						|
*
 | 
						|
      CALL DLACPY( ' ', N, N, B, LDB, WORK( N*N+1 ), N )
 | 
						|
      CALL DGEMM( 'N', 'N', N, N, N, ONE, U, LDU, T, LDT, ZERO,
 | 
						|
     $            WORK( 2*N*N+1 ), N )
 | 
						|
*
 | 
						|
      CALL DGEMM( 'N', 'C', N, N, N, -ONE, WORK( 2*N*N+1 ), N, V, LDV,
 | 
						|
     $            ONE, WORK( N*N+1 ), N )
 | 
						|
*
 | 
						|
*     Compute norm(W)/ ( ulp*norm((A,B)) )
 | 
						|
*
 | 
						|
      WNORM = DLANGE( '1', N, 2*N, WORK, N, DUM )
 | 
						|
*
 | 
						|
      IF( ABNORM.GT.WNORM ) THEN
 | 
						|
         RESULT = ( WNORM / ABNORM ) / ( 2*N*ULP )
 | 
						|
      ELSE
 | 
						|
         IF( ABNORM.LT.ONE ) THEN
 | 
						|
            RESULT = ( MIN( WNORM, 2*N*ABNORM ) / ABNORM ) / ( 2*N*ULP )
 | 
						|
         ELSE
 | 
						|
            RESULT = MIN( WNORM / ABNORM, DBLE( 2*N ) ) / ( 2*N*ULP )
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGET54
 | 
						|
*
 | 
						|
      END
 |