250 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			250 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGET36
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGET36( RMAX, LMAX, NINFO, KNT, NIN )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            KNT, LMAX, NIN
 | 
						|
*       DOUBLE PRECISION   RMAX
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            NINFO( 3 )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGET36 tests DTREXC, a routine for moving blocks (either 1 by 1 or
 | 
						|
*> 2 by 2) on the diagonal of a matrix in real Schur form.  Thus, DLAEXC
 | 
						|
*> computes an orthogonal matrix Q such that
 | 
						|
*>
 | 
						|
*>    Q' * T1 * Q  = T2
 | 
						|
*>
 | 
						|
*> and where one of the diagonal blocks of T1 (the one at row IFST) has
 | 
						|
*> been moved to position ILST.
 | 
						|
*>
 | 
						|
*> The test code verifies that the residual Q'*T1*Q-T2 is small, that T2
 | 
						|
*> is in Schur form, and that the final position of the IFST block is
 | 
						|
*> ILST (within +-1).
 | 
						|
*>
 | 
						|
*> The test matrices are read from a file with logical unit number NIN.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[out] RMAX
 | 
						|
*> \verbatim
 | 
						|
*>          RMAX is DOUBLE PRECISION
 | 
						|
*>          Value of the largest test ratio.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] LMAX
 | 
						|
*> \verbatim
 | 
						|
*>          LMAX is INTEGER
 | 
						|
*>          Example number where largest test ratio achieved.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] NINFO
 | 
						|
*> \verbatim
 | 
						|
*>          NINFO is INTEGER array, dimension (3)
 | 
						|
*>          NINFO(J) is the number of examples where INFO=J.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] KNT
 | 
						|
*> \verbatim
 | 
						|
*>          KNT is INTEGER
 | 
						|
*>          Total number of examples tested.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NIN
 | 
						|
*> \verbatim
 | 
						|
*>          NIN is INTEGER
 | 
						|
*>          Input logical unit number.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGET36( RMAX, LMAX, NINFO, KNT, NIN )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            KNT, LMAX, NIN
 | 
						|
      DOUBLE PRECISION   RMAX
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            NINFO( 3 )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | 
						|
      INTEGER            LDT, LWORK
 | 
						|
      PARAMETER          ( LDT = 10, LWORK = 2*LDT*LDT )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IFST, IFST1, IFST2, IFSTSV, ILST, ILST1,
 | 
						|
     $                   ILST2, ILSTSV, INFO1, INFO2, J, LOC, N
 | 
						|
      DOUBLE PRECISION   EPS, RES
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      DOUBLE PRECISION   Q( LDT, LDT ), RESULT( 2 ), T1( LDT, LDT ),
 | 
						|
     $                   T2( LDT, LDT ), TMP( LDT, LDT ), WORK( LWORK )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DHST01, DLACPY, DLASET, DTREXC
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, SIGN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
      RMAX = ZERO
 | 
						|
      LMAX = 0
 | 
						|
      KNT = 0
 | 
						|
      NINFO( 1 ) = 0
 | 
						|
      NINFO( 2 ) = 0
 | 
						|
      NINFO( 3 ) = 0
 | 
						|
*
 | 
						|
*     Read input data until N=0
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      READ( NIN, FMT = * )N, IFST, ILST
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
      KNT = KNT + 1
 | 
						|
      DO 20 I = 1, N
 | 
						|
         READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
 | 
						|
   20 CONTINUE
 | 
						|
      CALL DLACPY( 'F', N, N, TMP, LDT, T1, LDT )
 | 
						|
      CALL DLACPY( 'F', N, N, TMP, LDT, T2, LDT )
 | 
						|
      IFSTSV = IFST
 | 
						|
      ILSTSV = ILST
 | 
						|
      IFST1 = IFST
 | 
						|
      ILST1 = ILST
 | 
						|
      IFST2 = IFST
 | 
						|
      ILST2 = ILST
 | 
						|
      RES = ZERO
 | 
						|
*
 | 
						|
*     Test without accumulating Q
 | 
						|
*
 | 
						|
      CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
 | 
						|
      CALL DTREXC( 'N', N, T1, LDT, Q, LDT, IFST1, ILST1, WORK, INFO1 )
 | 
						|
      DO 40 I = 1, N
 | 
						|
         DO 30 J = 1, N
 | 
						|
            IF( I.EQ.J .AND. Q( I, J ).NE.ONE )
 | 
						|
     $         RES = RES + ONE / EPS
 | 
						|
            IF( I.NE.J .AND. Q( I, J ).NE.ZERO )
 | 
						|
     $         RES = RES + ONE / EPS
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Test with accumulating Q
 | 
						|
*
 | 
						|
      CALL DLASET( 'Full', N, N, ZERO, ONE, Q, LDT )
 | 
						|
      CALL DTREXC( 'V', N, T2, LDT, Q, LDT, IFST2, ILST2, WORK, INFO2 )
 | 
						|
*
 | 
						|
*     Compare T1 with T2
 | 
						|
*
 | 
						|
      DO 60 I = 1, N
 | 
						|
         DO 50 J = 1, N
 | 
						|
            IF( T1( I, J ).NE.T2( I, J ) )
 | 
						|
     $         RES = RES + ONE / EPS
 | 
						|
   50    CONTINUE
 | 
						|
   60 CONTINUE
 | 
						|
      IF( IFST1.NE.IFST2 )
 | 
						|
     $   RES = RES + ONE / EPS
 | 
						|
      IF( ILST1.NE.ILST2 )
 | 
						|
     $   RES = RES + ONE / EPS
 | 
						|
      IF( INFO1.NE.INFO2 )
 | 
						|
     $   RES = RES + ONE / EPS
 | 
						|
*
 | 
						|
*     Test for successful reordering of T2
 | 
						|
*
 | 
						|
      IF( INFO2.NE.0 ) THEN
 | 
						|
         NINFO( INFO2 ) = NINFO( INFO2 ) + 1
 | 
						|
      ELSE
 | 
						|
         IF( ABS( IFST2-IFSTSV ).GT.1 )
 | 
						|
     $      RES = RES + ONE / EPS
 | 
						|
         IF( ABS( ILST2-ILSTSV ).GT.1 )
 | 
						|
     $      RES = RES + ONE / EPS
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Test for small residual, and orthogonality of Q
 | 
						|
*
 | 
						|
      CALL DHST01( N, 1, N, TMP, LDT, T2, LDT, Q, LDT, WORK, LWORK,
 | 
						|
     $             RESULT )
 | 
						|
      RES = RES + RESULT( 1 ) + RESULT( 2 )
 | 
						|
*
 | 
						|
*     Test for T2 being in Schur form
 | 
						|
*
 | 
						|
      LOC = 1
 | 
						|
   70 CONTINUE
 | 
						|
      IF( T2( LOC+1, LOC ).NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*        2 by 2 block
 | 
						|
*
 | 
						|
         IF( T2( LOC, LOC+1 ).EQ.ZERO .OR. T2( LOC, LOC ).NE.
 | 
						|
     $       T2( LOC+1, LOC+1 ) .OR. SIGN( ONE, T2( LOC, LOC+1 ) ).EQ.
 | 
						|
     $       SIGN( ONE, T2( LOC+1, LOC ) ) )RES = RES + ONE / EPS
 | 
						|
         DO 80 I = LOC + 2, N
 | 
						|
            IF( T2( I, LOC ).NE.ZERO )
 | 
						|
     $         RES = RES + ONE / RES
 | 
						|
            IF( T2( I, LOC+1 ).NE.ZERO )
 | 
						|
     $         RES = RES + ONE / RES
 | 
						|
   80    CONTINUE
 | 
						|
         LOC = LOC + 2
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        1 by 1 block
 | 
						|
*
 | 
						|
         DO 90 I = LOC + 1, N
 | 
						|
            IF( T2( I, LOC ).NE.ZERO )
 | 
						|
     $         RES = RES + ONE / RES
 | 
						|
   90    CONTINUE
 | 
						|
         LOC = LOC + 1
 | 
						|
      END IF
 | 
						|
      IF( LOC.LT.N )
 | 
						|
     $   GO TO 70
 | 
						|
      IF( RES.GT.RMAX ) THEN
 | 
						|
         RMAX = RES
 | 
						|
         LMAX = KNT
 | 
						|
      END IF
 | 
						|
      GO TO 10
 | 
						|
*
 | 
						|
*     End of DGET36
 | 
						|
*
 | 
						|
      END
 |