536 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			536 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGEES + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgees.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgees.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgees.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
 | 
						|
*                         VS, LDVS, WORK, LWORK, BWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBVS, SORT
 | 
						|
*       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            BWORK( * )
 | 
						|
*       REAL               A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
 | 
						|
*      $                   WR( * )
 | 
						|
*       ..
 | 
						|
*       .. Function Arguments ..
 | 
						|
*       LOGICAL            SELECT
 | 
						|
*       EXTERNAL           SELECT
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGEES computes for an N-by-N real nonsymmetric matrix A, the
 | 
						|
*> eigenvalues, the real Schur form T, and, optionally, the matrix of
 | 
						|
*> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
 | 
						|
*>
 | 
						|
*> Optionally, it also orders the eigenvalues on the diagonal of the
 | 
						|
*> real Schur form so that selected eigenvalues are at the top left.
 | 
						|
*> The leading columns of Z then form an orthonormal basis for the
 | 
						|
*> invariant subspace corresponding to the selected eigenvalues.
 | 
						|
*>
 | 
						|
*> A matrix is in real Schur form if it is upper quasi-triangular with
 | 
						|
*> 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
 | 
						|
*> form
 | 
						|
*>         [  a  b  ]
 | 
						|
*>         [  c  a  ]
 | 
						|
*>
 | 
						|
*> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBVS
 | 
						|
*> \verbatim
 | 
						|
*>          JOBVS is CHARACTER*1
 | 
						|
*>          = 'N': Schur vectors are not computed;
 | 
						|
*>          = 'V': Schur vectors are computed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SORT
 | 
						|
*> \verbatim
 | 
						|
*>          SORT is CHARACTER*1
 | 
						|
*>          Specifies whether or not to order the eigenvalues on the
 | 
						|
*>          diagonal of the Schur form.
 | 
						|
*>          = 'N': Eigenvalues are not ordered;
 | 
						|
*>          = 'S': Eigenvalues are ordered (see SELECT).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] SELECT
 | 
						|
*> \verbatim
 | 
						|
*>          SELECT is LOGICAL FUNCTION of two REAL arguments
 | 
						|
*>          SELECT must be declared EXTERNAL in the calling subroutine.
 | 
						|
*>          If SORT = 'S', SELECT is used to select eigenvalues to sort
 | 
						|
*>          to the top left of the Schur form.
 | 
						|
*>          If SORT = 'N', SELECT is not referenced.
 | 
						|
*>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
 | 
						|
*>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
 | 
						|
*>          conjugate pair of eigenvalues is selected, then both complex
 | 
						|
*>          eigenvalues are selected.
 | 
						|
*>          Note that a selected complex eigenvalue may no longer
 | 
						|
*>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
 | 
						|
*>          ordering may change the value of complex eigenvalues
 | 
						|
*>          (especially if the eigenvalue is ill-conditioned); in this
 | 
						|
*>          case INFO is set to N+2 (see INFO below).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the N-by-N matrix A.
 | 
						|
*>          On exit, A has been overwritten by its real Schur form T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SDIM
 | 
						|
*> \verbatim
 | 
						|
*>          SDIM is INTEGER
 | 
						|
*>          If SORT = 'N', SDIM = 0.
 | 
						|
*>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
 | 
						|
*>                         for which SELECT is true. (Complex conjugate
 | 
						|
*>                         pairs for which SELECT is true for either
 | 
						|
*>                         eigenvalue count as 2.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WR
 | 
						|
*> \verbatim
 | 
						|
*>          WR is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WI
 | 
						|
*> \verbatim
 | 
						|
*>          WI is REAL array, dimension (N)
 | 
						|
*>          WR and WI contain the real and imaginary parts,
 | 
						|
*>          respectively, of the computed eigenvalues in the same order
 | 
						|
*>          that they appear on the diagonal of the output Schur form T.
 | 
						|
*>          Complex conjugate pairs of eigenvalues will appear
 | 
						|
*>          consecutively with the eigenvalue having the positive
 | 
						|
*>          imaginary part first.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] VS
 | 
						|
*> \verbatim
 | 
						|
*>          VS is REAL array, dimension (LDVS,N)
 | 
						|
*>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
 | 
						|
*>          vectors.
 | 
						|
*>          If JOBVS = 'N', VS is not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVS
 | 
						|
*> \verbatim
 | 
						|
*>          LDVS is INTEGER
 | 
						|
*>          The leading dimension of the array VS.  LDVS >= 1; if
 | 
						|
*>          JOBVS = 'V', LDVS >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= max(1,3*N).
 | 
						|
*>          For good performance, LWORK must generally be larger.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BWORK
 | 
						|
*> \verbatim
 | 
						|
*>          BWORK is LOGICAL array, dimension (N)
 | 
						|
*>          Not referenced if SORT = 'N'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0: if INFO = i, and i is
 | 
						|
*>             <= N: the QR algorithm failed to compute all the
 | 
						|
*>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
 | 
						|
*>                   contain those eigenvalues which have converged; if
 | 
						|
*>                   JOBVS = 'V', VS contains the matrix which reduces A
 | 
						|
*>                   to its partially converged Schur form.
 | 
						|
*>             = N+1: the eigenvalues could not be reordered because some
 | 
						|
*>                   eigenvalues were too close to separate (the problem
 | 
						|
*>                   is very ill-conditioned);
 | 
						|
*>             = N+2: after reordering, roundoff changed values of some
 | 
						|
*>                   complex eigenvalues so that leading eigenvalues in
 | 
						|
*>                   the Schur form no longer satisfy SELECT=.TRUE.  This
 | 
						|
*>                   could also be caused by underflow due to scaling.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup realGEeigen
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
 | 
						|
     $                  VS, LDVS, WORK, LWORK, BWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBVS, SORT
 | 
						|
      INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            BWORK( * )
 | 
						|
      REAL               A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
 | 
						|
     $                   WR( * )
 | 
						|
*     ..
 | 
						|
*     .. Function Arguments ..
 | 
						|
      LOGICAL            SELECT
 | 
						|
      EXTERNAL           SELECT
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
 | 
						|
     $                   WANTVS
 | 
						|
      INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
 | 
						|
     $                   IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
 | 
						|
      REAL               ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            IDUM( 1 )
 | 
						|
      REAL               DUM( 1 )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD,
 | 
						|
     $                   SLACPY, SLASCL, SORGHR, SSWAP, STRSEN, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               SLAMCH, SLANGE
 | 
						|
      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANGE
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
      WANTVS = LSAME( JOBVS, 'V' )
 | 
						|
      WANTST = LSAME( SORT, 'S' )
 | 
						|
      IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
 | 
						|
         INFO = -11
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*      (Note: Comments in the code beginning "Workspace:" describe the
 | 
						|
*       minimal amount of workspace needed at that point in the code,
 | 
						|
*       as well as the preferred amount for good performance.
 | 
						|
*       NB refers to the optimal block size for the immediately
 | 
						|
*       following subroutine, as returned by ILAENV.
 | 
						|
*       HSWORK refers to the workspace preferred by SHSEQR, as
 | 
						|
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
 | 
						|
*       the worst case.)
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( N.EQ.0 ) THEN
 | 
						|
            MINWRK = 1
 | 
						|
            MAXWRK = 1
 | 
						|
         ELSE
 | 
						|
            MAXWRK = 2*N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
 | 
						|
            MINWRK = 3*N
 | 
						|
*
 | 
						|
            CALL SHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
 | 
						|
     $             WORK, -1, IEVAL )
 | 
						|
            HSWORK = WORK( 1 )
 | 
						|
*
 | 
						|
            IF( .NOT.WANTVS ) THEN
 | 
						|
               MAXWRK = MAX( MAXWRK, N + HSWORK )
 | 
						|
            ELSE
 | 
						|
               MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
 | 
						|
     $                       'SORGHR', ' ', N, 1, N, -1 ) )
 | 
						|
               MAXWRK = MAX( MAXWRK, N + HSWORK )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         WORK( 1 ) = MAXWRK
 | 
						|
*
 | 
						|
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -13
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGEES ', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         SDIM = 0
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'P' )
 | 
						|
      SMLNUM = SLAMCH( 'S' )
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      CALL SLABAD( SMLNUM, BIGNUM )
 | 
						|
      SMLNUM = SQRT( SMLNUM ) / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
*
 | 
						|
*     Scale A if max element outside range [SMLNUM,BIGNUM]
 | 
						|
*
 | 
						|
      ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
 | 
						|
      SCALEA = .FALSE.
 | 
						|
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | 
						|
         SCALEA = .TRUE.
 | 
						|
         CSCALE = SMLNUM
 | 
						|
      ELSE IF( ANRM.GT.BIGNUM ) THEN
 | 
						|
         SCALEA = .TRUE.
 | 
						|
         CSCALE = BIGNUM
 | 
						|
      END IF
 | 
						|
      IF( SCALEA )
 | 
						|
     $   CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
 | 
						|
*
 | 
						|
*     Permute the matrix to make it more nearly triangular
 | 
						|
*     (Workspace: need N)
 | 
						|
*
 | 
						|
      IBAL = 1
 | 
						|
      CALL SGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
 | 
						|
*
 | 
						|
*     Reduce to upper Hessenberg form
 | 
						|
*     (Workspace: need 3*N, prefer 2*N+N*NB)
 | 
						|
*
 | 
						|
      ITAU = N + IBAL
 | 
						|
      IWRK = N + ITAU
 | 
						|
      CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
 | 
						|
     $             LWORK-IWRK+1, IERR )
 | 
						|
*
 | 
						|
      IF( WANTVS ) THEN
 | 
						|
*
 | 
						|
*        Copy Householder vectors to VS
 | 
						|
*
 | 
						|
         CALL SLACPY( 'L', N, N, A, LDA, VS, LDVS )
 | 
						|
*
 | 
						|
*        Generate orthogonal matrix in VS
 | 
						|
*        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | 
						|
*
 | 
						|
         CALL SORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
 | 
						|
     $                LWORK-IWRK+1, IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      SDIM = 0
 | 
						|
*
 | 
						|
*     Perform QR iteration, accumulating Schur vectors in VS if desired
 | 
						|
*     (Workspace: need N+1, prefer N+HSWORK (see comments) )
 | 
						|
*
 | 
						|
      IWRK = ITAU
 | 
						|
      CALL SHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
 | 
						|
     $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
 | 
						|
      IF( IEVAL.GT.0 )
 | 
						|
     $   INFO = IEVAL
 | 
						|
*
 | 
						|
*     Sort eigenvalues if desired
 | 
						|
*
 | 
						|
      IF( WANTST .AND. INFO.EQ.0 ) THEN
 | 
						|
         IF( SCALEA ) THEN
 | 
						|
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
 | 
						|
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
 | 
						|
         END IF
 | 
						|
         DO 10 I = 1, N
 | 
						|
            BWORK( I ) = SELECT( WR( I ), WI( I ) )
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*        Reorder eigenvalues and transform Schur vectors
 | 
						|
*        (Workspace: none needed)
 | 
						|
*
 | 
						|
         CALL STRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
 | 
						|
     $                SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
 | 
						|
     $                ICOND )
 | 
						|
         IF( ICOND.GT.0 )
 | 
						|
     $      INFO = N + ICOND
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTVS ) THEN
 | 
						|
*
 | 
						|
*        Undo balancing
 | 
						|
*        (Workspace: need N)
 | 
						|
*
 | 
						|
         CALL SGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
 | 
						|
     $                IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( SCALEA ) THEN
 | 
						|
*
 | 
						|
*        Undo scaling for the Schur form of A
 | 
						|
*
 | 
						|
         CALL SLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
 | 
						|
         CALL SCOPY( N, A, LDA+1, WR, 1 )
 | 
						|
         IF( CSCALE.EQ.SMLNUM ) THEN
 | 
						|
*
 | 
						|
*           If scaling back towards underflow, adjust WI if an
 | 
						|
*           offdiagonal element of a 2-by-2 block in the Schur form
 | 
						|
*           underflows.
 | 
						|
*
 | 
						|
            IF( IEVAL.GT.0 ) THEN
 | 
						|
               I1 = IEVAL + 1
 | 
						|
               I2 = IHI - 1
 | 
						|
               CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
 | 
						|
     $                      MAX( ILO-1, 1 ), IERR )
 | 
						|
            ELSE IF( WANTST ) THEN
 | 
						|
               I1 = 1
 | 
						|
               I2 = N - 1
 | 
						|
            ELSE
 | 
						|
               I1 = ILO
 | 
						|
               I2 = IHI - 1
 | 
						|
            END IF
 | 
						|
            INXT = I1 - 1
 | 
						|
            DO 20 I = I1, I2
 | 
						|
               IF( I.LT.INXT )
 | 
						|
     $            GO TO 20
 | 
						|
               IF( WI( I ).EQ.ZERO ) THEN
 | 
						|
                  INXT = I + 1
 | 
						|
               ELSE
 | 
						|
                  IF( A( I+1, I ).EQ.ZERO ) THEN
 | 
						|
                     WI( I ) = ZERO
 | 
						|
                     WI( I+1 ) = ZERO
 | 
						|
                  ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
 | 
						|
     $                     ZERO ) THEN
 | 
						|
                     WI( I ) = ZERO
 | 
						|
                     WI( I+1 ) = ZERO
 | 
						|
                     IF( I.GT.1 )
 | 
						|
     $                  CALL SSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
 | 
						|
                     IF( N.GT.I+1 )
 | 
						|
     $                  CALL SSWAP( N-I-1, A( I, I+2 ), LDA,
 | 
						|
     $                              A( I+1, I+2 ), LDA )
 | 
						|
                     IF( WANTVS ) THEN
 | 
						|
                        CALL SSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
 | 
						|
                     END IF
 | 
						|
                     A( I, I+1 ) = A( I+1, I )
 | 
						|
                     A( I+1, I ) = ZERO
 | 
						|
                  END IF
 | 
						|
                  INXT = I + 2
 | 
						|
               END IF
 | 
						|
   20       CONTINUE
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Undo scaling for the imaginary part of the eigenvalues
 | 
						|
*
 | 
						|
         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
 | 
						|
     $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( WANTST .AND. INFO.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*        Check if reordering successful
 | 
						|
*
 | 
						|
         LASTSL = .TRUE.
 | 
						|
         LST2SL = .TRUE.
 | 
						|
         SDIM = 0
 | 
						|
         IP = 0
 | 
						|
         DO 30 I = 1, N
 | 
						|
            CURSL = SELECT( WR( I ), WI( I ) )
 | 
						|
            IF( WI( I ).EQ.ZERO ) THEN
 | 
						|
               IF( CURSL )
 | 
						|
     $            SDIM = SDIM + 1
 | 
						|
               IP = 0
 | 
						|
               IF( CURSL .AND. .NOT.LASTSL )
 | 
						|
     $            INFO = N + 2
 | 
						|
            ELSE
 | 
						|
               IF( IP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*                 Last eigenvalue of conjugate pair
 | 
						|
*
 | 
						|
                  CURSL = CURSL .OR. LASTSL
 | 
						|
                  LASTSL = CURSL
 | 
						|
                  IF( CURSL )
 | 
						|
     $               SDIM = SDIM + 2
 | 
						|
                  IP = -1
 | 
						|
                  IF( CURSL .AND. .NOT.LST2SL )
 | 
						|
     $               INFO = N + 2
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 First eigenvalue of conjugate pair
 | 
						|
*
 | 
						|
                  IP = 1
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
            LST2SL = LASTSL
 | 
						|
            LASTSL = CURSL
 | 
						|
   30    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = MAXWRK
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGEES
 | 
						|
*
 | 
						|
      END
 |