275 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			275 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CTPCON
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CTPCON + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpcon.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpcon.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpcon.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK,
 | 
						|
*                          INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, NORM, UPLO
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       REAL               RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RWORK( * )
 | 
						|
*       COMPLEX            AP( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CTPCON estimates the reciprocal of the condition number of a packed
 | 
						|
*> triangular matrix A, in either the 1-norm or the infinity-norm.
 | 
						|
*>
 | 
						|
*> The norm of A is computed and an estimate is obtained for
 | 
						|
*> norm(inv(A)), then the reciprocal of the condition number is
 | 
						|
*> computed as
 | 
						|
*>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies whether the 1-norm condition number or the
 | 
						|
*>          infinity-norm condition number is required:
 | 
						|
*>          = '1' or 'O':  1-norm;
 | 
						|
*>          = 'I':         Infinity-norm.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  A is upper triangular;
 | 
						|
*>          = 'L':  A is lower triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          = 'N':  A is non-unit triangular;
 | 
						|
*>          = 'U':  A is unit triangular.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | 
						|
*>          The upper or lower triangular matrix A, packed columnwise in
 | 
						|
*>          a linear array.  The j-th column of A is stored in the array
 | 
						|
*>          AP as follows:
 | 
						|
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | 
						|
*>          If DIAG = 'U', the diagonal elements of A are not referenced
 | 
						|
*>          and are assumed to be 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          The reciprocal of the condition number of the matrix A,
 | 
						|
*>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, NORM, UPLO
 | 
						|
      INTEGER            INFO, N
 | 
						|
      REAL               RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RWORK( * )
 | 
						|
      COMPLEX            AP( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            NOUNIT, ONENRM, UPPER
 | 
						|
      CHARACTER          NORMIN
 | 
						|
      INTEGER            IX, KASE, KASE1
 | 
						|
      REAL               AINVNM, ANORM, SCALE, SMLNUM, XNORM
 | 
						|
      COMPLEX            ZDUM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ICAMAX
 | 
						|
      REAL               CLANTP, SLAMCH
 | 
						|
      EXTERNAL           LSAME, ICAMAX, CLANTP, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLACN2, CLATPS, CSRSCL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
 | 
						|
      NOUNIT = LSAME( DIAG, 'N' )
 | 
						|
*
 | 
						|
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CTPCON', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RCOND = ZERO
 | 
						|
      SMLNUM = SLAMCH( 'Safe minimum' )*REAL( MAX( 1, N ) )
 | 
						|
*
 | 
						|
*     Compute the norm of the triangular matrix A.
 | 
						|
*
 | 
						|
      ANORM = CLANTP( NORM, UPLO, DIAG, N, AP, RWORK )
 | 
						|
*
 | 
						|
*     Continue only if ANORM > 0.
 | 
						|
*
 | 
						|
      IF( ANORM.GT.ZERO ) THEN
 | 
						|
*
 | 
						|
*        Estimate the norm of the inverse of A.
 | 
						|
*
 | 
						|
         AINVNM = ZERO
 | 
						|
         NORMIN = 'N'
 | 
						|
         IF( ONENRM ) THEN
 | 
						|
            KASE1 = 1
 | 
						|
         ELSE
 | 
						|
            KASE1 = 2
 | 
						|
         END IF
 | 
						|
         KASE = 0
 | 
						|
   10    CONTINUE
 | 
						|
         CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | 
						|
         IF( KASE.NE.0 ) THEN
 | 
						|
            IF( KASE.EQ.KASE1 ) THEN
 | 
						|
*
 | 
						|
*              Multiply by inv(A).
 | 
						|
*
 | 
						|
               CALL CLATPS( UPLO, 'No transpose', DIAG, NORMIN, N, AP,
 | 
						|
     $                      WORK, SCALE, RWORK, INFO )
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Multiply by inv(A**H).
 | 
						|
*
 | 
						|
               CALL CLATPS( UPLO, 'Conjugate transpose', DIAG, NORMIN,
 | 
						|
     $                      N, AP, WORK, SCALE, RWORK, INFO )
 | 
						|
            END IF
 | 
						|
            NORMIN = 'Y'
 | 
						|
*
 | 
						|
*           Multiply by 1/SCALE if doing so will not cause overflow.
 | 
						|
*
 | 
						|
            IF( SCALE.NE.ONE ) THEN
 | 
						|
               IX = ICAMAX( N, WORK, 1 )
 | 
						|
               XNORM = CABS1( WORK( IX ) )
 | 
						|
               IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
 | 
						|
     $            GO TO 20
 | 
						|
               CALL CSRSCL( N, SCALE, WORK, 1 )
 | 
						|
            END IF
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
         IF( AINVNM.NE.ZERO )
 | 
						|
     $      RCOND = ( ONE / ANORM ) / AINVNM
 | 
						|
      END IF
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CTPCON
 | 
						|
*
 | 
						|
      END
 |