237 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			6.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLARZ + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarz.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarz.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarz.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          SIDE
 | |
| *       INTEGER            INCV, L, LDC, M, N
 | |
| *       REAL               TAU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               C( LDC, * ), V( * ), WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLARZ applies a real elementary reflector H to a real M-by-N
 | |
| *> matrix C, from either the left or the right. H is represented in the
 | |
| *> form
 | |
| *>
 | |
| *>       H = I - tau * v * v**T
 | |
| *>
 | |
| *> where tau is a real scalar and v is a real vector.
 | |
| *>
 | |
| *> If tau = 0, then H is taken to be the unit matrix.
 | |
| *>
 | |
| *>
 | |
| *> H is a product of k elementary reflectors as returned by STZRZF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': form  H * C
 | |
| *>          = 'R': form  C * H
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>          The number of entries of the vector V containing
 | |
| *>          the meaningful part of the Householder vectors.
 | |
| *>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is REAL array, dimension (1+(L-1)*abs(INCV))
 | |
| *>          The vector v in the representation of H as returned by
 | |
| *>          STZRZF. V is not used if TAU = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCV
 | |
| *> \verbatim
 | |
| *>          INCV is INTEGER
 | |
| *>          The increment between elements of v. INCV <> 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL
 | |
| *>          The value tau in the representation of H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (LDC,N)
 | |
| *>          On entry, the M-by-N matrix C.
 | |
| *>          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
 | |
| *>          or C * H if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension
 | |
| *>                         (N) if SIDE = 'L'
 | |
| *>                      or (M) if SIDE = 'R'
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          SIDE
 | |
|       INTEGER            INCV, L, LDC, M, N
 | |
|       REAL               TAU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               C( LDC, * ), V( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SCOPY, SGEMV, SGER
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( LSAME( SIDE, 'L' ) ) THEN
 | |
| *
 | |
| *        Form  H * C
 | |
| *
 | |
|          IF( TAU.NE.ZERO ) THEN
 | |
| *
 | |
| *           w( 1:n ) = C( 1, 1:n )
 | |
| *
 | |
|             CALL SCOPY( N, C, LDC, WORK, 1 )
 | |
| *
 | |
| *           w( 1:n ) = w( 1:n ) + C( m-l+1:m, 1:n )**T * v( 1:l )
 | |
| *
 | |
|             CALL SGEMV( 'Transpose', L, N, ONE, C( M-L+1, 1 ), LDC, V,
 | |
|      $                  INCV, ONE, WORK, 1 )
 | |
| *
 | |
| *           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
 | |
| *
 | |
|             CALL SAXPY( N, -TAU, WORK, 1, C, LDC )
 | |
| *
 | |
| *           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
 | |
| *                               tau * v( 1:l ) * w( 1:n )**T
 | |
| *
 | |
|             CALL SGER( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
 | |
|      $                 LDC )
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Form  C * H
 | |
| *
 | |
|          IF( TAU.NE.ZERO ) THEN
 | |
| *
 | |
| *           w( 1:m ) = C( 1:m, 1 )
 | |
| *
 | |
|             CALL SCOPY( M, C, 1, WORK, 1 )
 | |
| *
 | |
| *           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
 | |
| *
 | |
|             CALL SGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
 | |
|      $                  V, INCV, ONE, WORK, 1 )
 | |
| *
 | |
| *           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
 | |
| *
 | |
|             CALL SAXPY( M, -TAU, WORK, 1, C, 1 )
 | |
| *
 | |
| *           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
 | |
| *                               tau * w( 1:m ) * v( 1:l )**T
 | |
| *
 | |
|             CALL SGER( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
 | |
|      $                 LDC )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLARZ
 | |
| *
 | |
|       END
 |