203 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CUNGR2 generates all or part of the unitary matrix Q from an RQ factorization determined by cgerqf (unblocked algorithm).
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CUNGR2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungr2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungr2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungr2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, K, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CUNGR2 generates an m by n complex matrix Q with orthonormal rows,
 | 
						|
*> which is defined as the last m rows of a product of k elementary
 | 
						|
*> reflectors of order n
 | 
						|
*>
 | 
						|
*>       Q  =  H(1)**H H(2)**H . . . H(k)**H
 | 
						|
*>
 | 
						|
*> as returned by CGERQF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix Q. M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix Q. N >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of elementary reflectors whose product defines the
 | 
						|
*>          matrix Q. M >= K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA,N)
 | 
						|
*>          On entry, the (m-k+i)-th row must contain the vector which
 | 
						|
*>          defines the elementary reflector H(i), for i = 1,2,...,k, as
 | 
						|
*>          returned by CGERQF in the last k rows of its array argument
 | 
						|
*>          A.
 | 
						|
*>          On exit, the m-by-n matrix Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The first dimension of the array A. LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX array, dimension (K)
 | 
						|
*>          TAU(i) must contain the scalar factor of the elementary
 | 
						|
*>          reflector H(i), as returned by CGERQF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument has an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, K, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX            ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
 | 
						|
     $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, II, J, L
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CLACGV, CLARF, CSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          CONJG, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.M ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'CUNGR2', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( K.LT.M ) THEN
 | 
						|
*
 | 
						|
*        Initialise rows 1:m-k to rows of the unit matrix
 | 
						|
*
 | 
						|
         DO 20 J = 1, N
 | 
						|
            DO 10 L = 1, M - K
 | 
						|
               A( L, J ) = ZERO
 | 
						|
   10       CONTINUE
 | 
						|
            IF( J.GT.N-M .AND. J.LE.N-K )
 | 
						|
     $         A( M-N+J, J ) = ONE
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      DO 40 I = 1, K
 | 
						|
         II = M - K + I
 | 
						|
*
 | 
						|
*        Apply H(i)**H to A(1:m-k+i,1:n-k+i) from the right
 | 
						|
*
 | 
						|
         CALL CLACGV( N-M+II-1, A( II, 1 ), LDA )
 | 
						|
         A( II, N-M+II ) = ONE
 | 
						|
         CALL CLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA,
 | 
						|
     $               CONJG( TAU( I ) ), A, LDA, WORK )
 | 
						|
         CALL CSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA )
 | 
						|
         CALL CLACGV( N-M+II-1, A( II, 1 ), LDA )
 | 
						|
         A( II, N-M+II ) = ONE - CONJG( TAU( I ) )
 | 
						|
*
 | 
						|
*        Set A(m-k+i,n-k+i+1:n) to zero
 | 
						|
*
 | 
						|
         DO 30 L = N - M + II + 1, N
 | 
						|
            A( II, L ) = ZERO
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CUNGR2
 | 
						|
*
 | 
						|
      END
 |