1861 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1861 lines
		
	
	
		
			57 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__0 = 0;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZLATMR */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZLATMR( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, */
 | |
| /*                          RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER, */
 | |
| /*                          CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM, */
 | |
| /*                          PACK, A, LDA, IWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          DIST, GRADE, PACK, PIVTNG, RSIGN, SYM */
 | |
| /*       INTEGER            INFO, KL, KU, LDA, M, MODE, MODEL, MODER, N */
 | |
| /*       DOUBLE PRECISION   ANORM, COND, CONDL, CONDR, SPARSE */
 | |
| /*       COMPLEX*16         DMAX */
 | |
| /*       INTEGER            IPIVOT( * ), ISEED( 4 ), IWORK( * ) */
 | |
| /*       COMPLEX*16         A( LDA, * ), D( * ), DL( * ), DR( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    ZLATMR generates random matrices of various types for testing */
 | |
| /* >    LAPACK programs. */
 | |
| /* > */
 | |
| /* >    ZLATMR operates by applying the following sequence of */
 | |
| /* >    operations: */
 | |
| /* > */
 | |
| /* >      Generate a matrix A with random entries of distribution DIST */
 | |
| /* >         which is symmetric if SYM='S', Hermitian if SYM='H', and */
 | |
| /* >         nonsymmetric if SYM='N'. */
 | |
| /* > */
 | |
| /* >      Set the diagonal to D, where D may be input or */
 | |
| /* >         computed according to MODE, COND, DMAX and RSIGN */
 | |
| /* >         as described below. */
 | |
| /* > */
 | |
| /* >      Grade the matrix, if desired, from the left and/or right */
 | |
| /* >         as specified by GRADE. The inputs DL, MODEL, CONDL, DR, */
 | |
| /* >         MODER and CONDR also determine the grading as described */
 | |
| /* >         below. */
 | |
| /* > */
 | |
| /* >      Permute, if desired, the rows and/or columns as specified by */
 | |
| /* >         PIVTNG and IPIVOT. */
 | |
| /* > */
 | |
| /* >      Set random entries to zero, if desired, to get a random sparse */
 | |
| /* >         matrix as specified by SPARSE. */
 | |
| /* > */
 | |
| /* >      Make A a band matrix, if desired, by zeroing out the matrix */
 | |
| /* >         outside a band of lower bandwidth KL and upper bandwidth KU. */
 | |
| /* > */
 | |
| /* >      Scale A, if desired, to have maximum entry ANORM. */
 | |
| /* > */
 | |
| /* >      Pack the matrix if desired. Options specified by PACK are: */
 | |
| /* >         no packing */
 | |
| /* >         zero out upper half (if symmetric or Hermitian) */
 | |
| /* >         zero out lower half (if symmetric or Hermitian) */
 | |
| /* >         store the upper half columnwise (if symmetric or Hermitian */
 | |
| /* >             or square upper triangular) */
 | |
| /* >         store the lower half columnwise (if symmetric or Hermitian */
 | |
| /* >             or square lower triangular) */
 | |
| /* >             same as upper half rowwise if symmetric */
 | |
| /* >             same as conjugate upper half rowwise if Hermitian */
 | |
| /* >         store the lower triangle in banded format */
 | |
| /* >             (if symmetric or Hermitian) */
 | |
| /* >         store the upper triangle in banded format */
 | |
| /* >             (if symmetric or Hermitian) */
 | |
| /* >         store the entire matrix in banded format */
 | |
| /* > */
 | |
| /* >    Note: If two calls to ZLATMR differ only in the PACK parameter, */
 | |
| /* >          they will generate mathematically equivalent matrices. */
 | |
| /* > */
 | |
| /* >          If two calls to ZLATMR both have full bandwidth (KL = M-1 */
 | |
| /* >          and KU = N-1), and differ only in the PIVTNG and PACK */
 | |
| /* >          parameters, then the matrices generated will differ only */
 | |
| /* >          in the order of the rows and/or columns, and otherwise */
 | |
| /* >          contain the same data. This consistency cannot be and */
 | |
| /* >          is not maintained with less than full bandwidth. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >           Number of rows of A. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >           Number of columns of A. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIST */
 | |
| /* > \verbatim */
 | |
| /* >          DIST is CHARACTER*1 */
 | |
| /* >           On entry, DIST specifies the type of distribution to be used */
 | |
| /* >           to generate a random matrix . */
 | |
| /* >           'U' => real and imaginary parts are independent */
 | |
| /* >                  UNIFORM( 0, 1 )  ( 'U' for uniform ) */
 | |
| /* >           'S' => real and imaginary parts are independent */
 | |
| /* >                  UNIFORM( -1, 1 ) ( 'S' for symmetric ) */
 | |
| /* >           'N' => real and imaginary parts are independent */
 | |
| /* >                  NORMAL( 0, 1 )   ( 'N' for normal ) */
 | |
| /* >           'D' => uniform on interior of unit disk ( 'D' for disk ) */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] ISEED */
 | |
| /* > \verbatim */
 | |
| /* >          ISEED is INTEGER array, dimension (4) */
 | |
| /* >           On entry ISEED specifies the seed of the random number */
 | |
| /* >           generator. They should lie between 0 and 4095 inclusive, */
 | |
| /* >           and ISEED(4) should be odd. The random number generator */
 | |
| /* >           uses a linear congruential sequence limited to small */
 | |
| /* >           integers, and so should produce machine independent */
 | |
| /* >           random numbers. The values of ISEED are changed on */
 | |
| /* >           exit, and can be used in the next call to ZLATMR */
 | |
| /* >           to continue the same random number sequence. */
 | |
| /* >           Changed on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SYM */
 | |
| /* > \verbatim */
 | |
| /* >          SYM is CHARACTER*1 */
 | |
| /* >           If SYM='S', generated matrix is symmetric. */
 | |
| /* >           If SYM='H', generated matrix is Hermitian. */
 | |
| /* >           If SYM='N', generated matrix is nonsymmetric. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is COMPLEX*16 array, dimension (f2cmin(M,N)) */
 | |
| /* >           On entry this array specifies the diagonal entries */
 | |
| /* >           of the diagonal of A.  D may either be specified */
 | |
| /* >           on entry, or set according to MODE and COND as described */
 | |
| /* >           below. If the matrix is Hermitian, the real part of D */
 | |
| /* >           will be taken. May be changed on exit if MODE is nonzero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MODE */
 | |
| /* > \verbatim */
 | |
| /* >          MODE is INTEGER */
 | |
| /* >           On entry describes how D is to be used: */
 | |
| /* >           MODE = 0 means use D as input */
 | |
| /* >           MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND */
 | |
| /* >           MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND */
 | |
| /* >           MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) */
 | |
| /* >           MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) */
 | |
| /* >           MODE = 5 sets D to random numbers in the range */
 | |
| /* >                    ( 1/COND , 1 ) such that their logarithms */
 | |
| /* >                    are uniformly distributed. */
 | |
| /* >           MODE = 6 set D to random numbers from same distribution */
 | |
| /* >                    as the rest of the matrix. */
 | |
| /* >           MODE < 0 has the same meaning as ABS(MODE), except that */
 | |
| /* >              the order of the elements of D is reversed. */
 | |
| /* >           Thus if MODE is positive, D has entries ranging from */
 | |
| /* >              1 to 1/COND, if negative, from 1/COND to 1, */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] COND */
 | |
| /* > \verbatim */
 | |
| /* >          COND is DOUBLE PRECISION */
 | |
| /* >           On entry, used as described under MODE above. */
 | |
| /* >           If used, it must be >= 1. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DMAX */
 | |
| /* > \verbatim */
 | |
| /* >          DMAX is COMPLEX*16 */
 | |
| /* >           If MODE neither -6, 0 nor 6, the diagonal is scaled by */
 | |
| /* >           DMAX / f2cmax(abs(D(i))), so that maximum absolute entry */
 | |
| /* >           of diagonal is abs(DMAX). If DMAX is complex (or zero), */
 | |
| /* >           diagonal will be scaled by a complex number (or zero). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RSIGN */
 | |
| /* > \verbatim */
 | |
| /* >          RSIGN is CHARACTER*1 */
 | |
| /* >           If MODE neither -6, 0 nor 6, specifies sign of diagonal */
 | |
| /* >           as follows: */
 | |
| /* >           'T' => diagonal entries are multiplied by a random complex */
 | |
| /* >                  number uniformly distributed with absolute value 1 */
 | |
| /* >           'F' => diagonal unchanged */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GRADE */
 | |
| /* > \verbatim */
 | |
| /* >          GRADE is CHARACTER*1 */
 | |
| /* >           Specifies grading of matrix as follows: */
 | |
| /* >           'N'  => no grading */
 | |
| /* >           'L'  => matrix premultiplied by diag( DL ) */
 | |
| /* >                   (only if matrix nonsymmetric) */
 | |
| /* >           'R'  => matrix postmultiplied by diag( DR ) */
 | |
| /* >                   (only if matrix nonsymmetric) */
 | |
| /* >           'B'  => matrix premultiplied by diag( DL ) and */
 | |
| /* >                         postmultiplied by diag( DR ) */
 | |
| /* >                   (only if matrix nonsymmetric) */
 | |
| /* >           'H'  => matrix premultiplied by diag( DL ) and */
 | |
| /* >                         postmultiplied by diag( CONJG(DL) ) */
 | |
| /* >                   (only if matrix Hermitian or nonsymmetric) */
 | |
| /* >           'S'  => matrix premultiplied by diag( DL ) and */
 | |
| /* >                         postmultiplied by diag( DL ) */
 | |
| /* >                   (only if matrix symmetric or nonsymmetric) */
 | |
| /* >           'E'  => matrix premultiplied by diag( DL ) and */
 | |
| /* >                         postmultiplied by inv( diag( DL ) ) */
 | |
| /* >                         ( 'S' for similarity ) */
 | |
| /* >                   (only if matrix nonsymmetric) */
 | |
| /* >                   Note: if GRADE='S', then M must equal N. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DL */
 | |
| /* > \verbatim */
 | |
| /* >          DL is COMPLEX*16 array, dimension (M) */
 | |
| /* >           If MODEL=0, then on entry this array specifies the diagonal */
 | |
| /* >           entries of a diagonal matrix used as described under GRADE */
 | |
| /* >           above. If MODEL is not zero, then DL will be set according */
 | |
| /* >           to MODEL and CONDL, analogous to the way D is set according */
 | |
| /* >           to MODE and COND (except there is no DMAX parameter for DL). */
 | |
| /* >           If GRADE='E', then DL cannot have zero entries. */
 | |
| /* >           Not referenced if GRADE = 'N' or 'R'. Changed on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MODEL */
 | |
| /* > \verbatim */
 | |
| /* >          MODEL is INTEGER */
 | |
| /* >           This specifies how the diagonal array DL is to be computed, */
 | |
| /* >           just as MODE specifies how D is to be computed. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CONDL */
 | |
| /* > \verbatim */
 | |
| /* >          CONDL is DOUBLE PRECISION */
 | |
| /* >           When MODEL is not zero, this specifies the condition number */
 | |
| /* >           of the computed DL.  Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DR */
 | |
| /* > \verbatim */
 | |
| /* >          DR is COMPLEX*16 array, dimension (N) */
 | |
| /* >           If MODER=0, then on entry this array specifies the diagonal */
 | |
| /* >           entries of a diagonal matrix used as described under GRADE */
 | |
| /* >           above. If MODER is not zero, then DR will be set according */
 | |
| /* >           to MODER and CONDR, analogous to the way D is set according */
 | |
| /* >           to MODE and COND (except there is no DMAX parameter for DR). */
 | |
| /* >           Not referenced if GRADE = 'N', 'L', 'H' or 'S'. */
 | |
| /* >           Changed on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MODER */
 | |
| /* > \verbatim */
 | |
| /* >          MODER is INTEGER */
 | |
| /* >           This specifies how the diagonal array DR is to be computed, */
 | |
| /* >           just as MODE specifies how D is to be computed. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CONDR */
 | |
| /* > \verbatim */
 | |
| /* >          CONDR is DOUBLE PRECISION */
 | |
| /* >           When MODER is not zero, this specifies the condition number */
 | |
| /* >           of the computed DR.  Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PIVTNG */
 | |
| /* > \verbatim */
 | |
| /* >          PIVTNG is CHARACTER*1 */
 | |
| /* >           On entry specifies pivoting permutations as follows: */
 | |
| /* >           'N' or ' ' => none. */
 | |
| /* >           'L' => left or row pivoting (matrix must be nonsymmetric). */
 | |
| /* >           'R' => right or column pivoting (matrix must be */
 | |
| /* >                  nonsymmetric). */
 | |
| /* >           'B' or 'F' => both or full pivoting, i.e., on both sides. */
 | |
| /* >                         In this case, M must equal N */
 | |
| /* > */
 | |
| /* >           If two calls to ZLATMR both have full bandwidth (KL = M-1 */
 | |
| /* >           and KU = N-1), and differ only in the PIVTNG and PACK */
 | |
| /* >           parameters, then the matrices generated will differ only */
 | |
| /* >           in the order of the rows and/or columns, and otherwise */
 | |
| /* >           contain the same data. This consistency cannot be */
 | |
| /* >           maintained with less than full bandwidth. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IPIVOT */
 | |
| /* > \verbatim */
 | |
| /* >          IPIVOT is INTEGER array, dimension (N or M) */
 | |
| /* >           This array specifies the permutation used.  After the */
 | |
| /* >           basic matrix is generated, the rows, columns, or both */
 | |
| /* >           are permuted.   If, say, row pivoting is selected, ZLATMR */
 | |
| /* >           starts with the *last* row and interchanges the M-th and */
 | |
| /* >           IPIVOT(M)-th rows, then moves to the next-to-last row, */
 | |
| /* >           interchanging the (M-1)-th and the IPIVOT(M-1)-th rows, */
 | |
| /* >           and so on.  In terms of "2-cycles", the permutation is */
 | |
| /* >           (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M)) */
 | |
| /* >           where the rightmost cycle is applied first.  This is the */
 | |
| /* >           *inverse* of the effect of pivoting in LINPACK.  The idea */
 | |
| /* >           is that factoring (with pivoting) an identity matrix */
 | |
| /* >           which has been inverse-pivoted in this way should */
 | |
| /* >           result in a pivot vector identical to IPIVOT. */
 | |
| /* >           Not referenced if PIVTNG = 'N'. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KL */
 | |
| /* > \verbatim */
 | |
| /* >          KL is INTEGER */
 | |
| /* >           On entry specifies the lower bandwidth of the  matrix. For */
 | |
| /* >           example, KL=0 implies upper triangular, KL=1 implies upper */
 | |
| /* >           Hessenberg, and KL at least M-1 implies the matrix is not */
 | |
| /* >           banded. Must equal KU if matrix is symmetric or Hermitian. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KU */
 | |
| /* > \verbatim */
 | |
| /* >          KU is INTEGER */
 | |
| /* >           On entry specifies the upper bandwidth of the  matrix. For */
 | |
| /* >           example, KU=0 implies lower triangular, KU=1 implies lower */
 | |
| /* >           Hessenberg, and KU at least N-1 implies the matrix is not */
 | |
| /* >           banded. Must equal KL if matrix is symmetric or Hermitian. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SPARSE */
 | |
| /* > \verbatim */
 | |
| /* >          SPARSE is DOUBLE PRECISION */
 | |
| /* >           On entry specifies the sparsity of the matrix if a sparse */
 | |
| /* >           matrix is to be generated. SPARSE should lie between */
 | |
| /* >           0 and 1. To generate a sparse matrix, for each matrix entry */
 | |
| /* >           a uniform ( 0, 1 ) random number x is generated and */
 | |
| /* >           compared to SPARSE; if x is larger the matrix entry */
 | |
| /* >           is unchanged and if x is smaller the entry is set */
 | |
| /* >           to zero. Thus on the average a fraction SPARSE of the */
 | |
| /* >           entries will be set to zero. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ANORM */
 | |
| /* > \verbatim */
 | |
| /* >          ANORM is DOUBLE PRECISION */
 | |
| /* >           On entry specifies maximum entry of output matrix */
 | |
| /* >           (output matrix will by multiplied by a constant so that */
 | |
| /* >           its largest absolute entry equal ANORM) */
 | |
| /* >           if ANORM is nonnegative. If ANORM is negative no scaling */
 | |
| /* >           is done. Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PACK */
 | |
| /* > \verbatim */
 | |
| /* >          PACK is CHARACTER*1 */
 | |
| /* >           On entry specifies packing of matrix as follows: */
 | |
| /* >           'N' => no packing */
 | |
| /* >           'U' => zero out all subdiagonal entries */
 | |
| /* >                  (if symmetric or Hermitian) */
 | |
| /* >           'L' => zero out all superdiagonal entries */
 | |
| /* >                  (if symmetric or Hermitian) */
 | |
| /* >           'C' => store the upper triangle columnwise */
 | |
| /* >                  (only if matrix symmetric or Hermitian or */
 | |
| /* >                   square upper triangular) */
 | |
| /* >           'R' => store the lower triangle columnwise */
 | |
| /* >                  (only if matrix symmetric or Hermitian or */
 | |
| /* >                   square lower triangular) */
 | |
| /* >                  (same as upper half rowwise if symmetric) */
 | |
| /* >                  (same as conjugate upper half rowwise if Hermitian) */
 | |
| /* >           'B' => store the lower triangle in band storage scheme */
 | |
| /* >                  (only if matrix symmetric or Hermitian) */
 | |
| /* >           'Q' => store the upper triangle in band storage scheme */
 | |
| /* >                  (only if matrix symmetric or Hermitian) */
 | |
| /* >           'Z' => store the entire matrix in band storage scheme */
 | |
| /* >                      (pivoting can be provided for by using this */
 | |
| /* >                      option to store A in the trailing rows of */
 | |
| /* >                      the allocated storage) */
 | |
| /* > */
 | |
| /* >           Using these options, the various LAPACK packed and banded */
 | |
| /* >           storage schemes can be obtained: */
 | |
| /* >           GB               - use 'Z' */
 | |
| /* >           PB, HB or TB     - use 'B' or 'Q' */
 | |
| /* >           PP, HP or TP     - use 'C' or 'R' */
 | |
| /* > */
 | |
| /* >           If two calls to ZLATMR differ only in the PACK parameter, */
 | |
| /* >           they will generate mathematically equivalent matrices. */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA,N) */
 | |
| /* >           On exit A is the desired test matrix. Only those */
 | |
| /* >           entries of A which are significant on output */
 | |
| /* >           will be referenced (even if A is in packed or band */
 | |
| /* >           storage format). The 'unoccupied corners' of A in */
 | |
| /* >           band format will be zeroed out. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >           on entry LDA specifies the first dimension of A as */
 | |
| /* >           declared in the calling program. */
 | |
| /* >           If PACK='N', 'U' or 'L', LDA must be at least f2cmax ( 1, M ). */
 | |
| /* >           If PACK='C' or 'R', LDA must be at least 1. */
 | |
| /* >           If PACK='B', or 'Q', LDA must be MIN ( KU+1, N ) */
 | |
| /* >           If PACK='Z', LDA must be at least KUU+KLL+1, where */
 | |
| /* >           KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, M-1 ) */
 | |
| /* >           Not modified. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (N or M) */
 | |
| /* >           Workspace. Not referenced if PIVTNG = 'N'. Changed on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >           Error parameter on exit: */
 | |
| /* >             0 => normal return */
 | |
| /* >            -1 => M negative or unequal to N and SYM='S' or 'H' */
 | |
| /* >            -2 => N negative */
 | |
| /* >            -3 => DIST illegal string */
 | |
| /* >            -5 => SYM illegal string */
 | |
| /* >            -7 => MODE not in range -6 to 6 */
 | |
| /* >            -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 */
 | |
| /* >           -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string */
 | |
| /* >           -11 => GRADE illegal string, or GRADE='E' and */
 | |
| /* >                  M not equal to N, or GRADE='L', 'R', 'B', 'S' or 'E' */
 | |
| /* >                  and SYM = 'H', or GRADE='L', 'R', 'B', 'H' or 'E' */
 | |
| /* >                  and SYM = 'S' */
 | |
| /* >           -12 => GRADE = 'E' and DL contains zero */
 | |
| /* >           -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H', */
 | |
| /* >                  'S' or 'E' */
 | |
| /* >           -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E', */
 | |
| /* >                  and MODEL neither -6, 0 nor 6 */
 | |
| /* >           -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B' */
 | |
| /* >           -17 => CONDR less than 1.0, GRADE='R' or 'B', and */
 | |
| /* >                  MODER neither -6, 0 nor 6 */
 | |
| /* >           -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and */
 | |
| /* >                  M not equal to N, or PIVTNG='L' or 'R' and SYM='S' */
 | |
| /* >                  or 'H' */
 | |
| /* >           -19 => IPIVOT contains out of range number and */
 | |
| /* >                  PIVTNG not equal to 'N' */
 | |
| /* >           -20 => KL negative */
 | |
| /* >           -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL */
 | |
| /* >           -22 => SPARSE not in range 0. to 1. */
 | |
| /* >           -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q' */
 | |
| /* >                  and SYM='N', or PACK='C' and SYM='N' and either KL */
 | |
| /* >                  not equal to 0 or N not equal to M, or PACK='R' and */
 | |
| /* >                  SYM='N', and either KU not equal to 0 or N not equal */
 | |
| /* >                  to M */
 | |
| /* >           -26 => LDA too small */
 | |
| /* >             1 => Error return from ZLATM1 (computing D) */
 | |
| /* >             2 => Cannot scale diagonal to DMAX (f2cmax. entry is 0) */
 | |
| /* >             3 => Error return from ZLATM1 (computing DL) */
 | |
| /* >             4 => Error return from ZLATM1 (computing DR) */
 | |
| /* >             5 => ANORM is positive, but matrix constructed prior to */
 | |
| /* >                  attempting to scale it to have norm ANORM, is zero */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16_matgen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zlatmr_(integer *m, integer *n, char *dist, integer *
 | |
| 	iseed, char *sym, doublecomplex *d__, integer *mode, doublereal *cond,
 | |
| 	 doublecomplex *dmax__, char *rsign, char *grade, doublecomplex *dl, 
 | |
| 	integer *model, doublereal *condl, doublecomplex *dr, integer *moder, 
 | |
| 	doublereal *condr, char *pivtng, integer *ipivot, integer *kl, 
 | |
| 	integer *ku, doublereal *sparse, doublereal *anorm, char *pack, 
 | |
| 	doublecomplex *a, integer *lda, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
 | |
|     doublereal d__1, d__2;
 | |
|     doublecomplex z__1, z__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer isub, jsub;
 | |
|     doublereal temp;
 | |
|     integer isym, i__, j, k, ipack;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal tempa[1];
 | |
|     doublecomplex ctemp;
 | |
|     integer iisub, idist, jjsub, mnmin;
 | |
|     logical dzero;
 | |
|     integer mnsub;
 | |
|     doublereal onorm;
 | |
|     integer mxsub, npvts;
 | |
|     extern /* Subroutine */ void zlatm1_(integer *, doublereal *, integer *, 
 | |
| 	    integer *, integer *, doublecomplex *, integer *, integer *);
 | |
|     extern /* Double Complex */ VOID zlatm2_(doublecomplex *, integer *, 
 | |
| 	    integer *, integer *, integer *, integer *, integer *, integer *, 
 | |
| 	    integer *, doublecomplex *, integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *, integer *, doublereal *), zlatm3_(
 | |
| 	    doublecomplex *, integer *, integer *, integer *, integer *, 
 | |
| 	    integer *, integer *, integer *, integer *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *, integer *, doublereal *);
 | |
|     doublecomplex calpha;
 | |
|     integer igrade;
 | |
|     logical fulbnd;
 | |
|     extern doublereal zlangb_(char *, integer *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     logical badpvt;
 | |
|     extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublereal *);
 | |
|     extern /* Subroutine */ void zdscal_(integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     extern doublereal zlansb_(char *, char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *);
 | |
|     integer irsign, ipvtng;
 | |
|     extern doublereal zlansp_(char *, char *, integer *, doublecomplex *, 
 | |
| 	    doublereal *), zlansy_(char *, char *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *);
 | |
|     integer kll, kuu;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     1)      Decode and Test the input parameters. */
 | |
| /*             Initialize flags & seed. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --iseed;
 | |
|     --d__;
 | |
|     --dl;
 | |
|     --dr;
 | |
|     --ipivot;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Decode DIST */
 | |
| 
 | |
|     if (lsame_(dist, "U")) {
 | |
| 	idist = 1;
 | |
|     } else if (lsame_(dist, "S")) {
 | |
| 	idist = 2;
 | |
|     } else if (lsame_(dist, "N")) {
 | |
| 	idist = 3;
 | |
|     } else if (lsame_(dist, "D")) {
 | |
| 	idist = 4;
 | |
|     } else {
 | |
| 	idist = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode SYM */
 | |
| 
 | |
|     if (lsame_(sym, "H")) {
 | |
| 	isym = 0;
 | |
|     } else if (lsame_(sym, "N")) {
 | |
| 	isym = 1;
 | |
|     } else if (lsame_(sym, "S")) {
 | |
| 	isym = 2;
 | |
|     } else {
 | |
| 	isym = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode RSIGN */
 | |
| 
 | |
|     if (lsame_(rsign, "F")) {
 | |
| 	irsign = 0;
 | |
|     } else if (lsame_(rsign, "T")) {
 | |
| 	irsign = 1;
 | |
|     } else {
 | |
| 	irsign = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode PIVTNG */
 | |
| 
 | |
|     if (lsame_(pivtng, "N")) {
 | |
| 	ipvtng = 0;
 | |
|     } else if (lsame_(pivtng, " ")) {
 | |
| 	ipvtng = 0;
 | |
|     } else if (lsame_(pivtng, "L")) {
 | |
| 	ipvtng = 1;
 | |
| 	npvts = *m;
 | |
|     } else if (lsame_(pivtng, "R")) {
 | |
| 	ipvtng = 2;
 | |
| 	npvts = *n;
 | |
|     } else if (lsame_(pivtng, "B")) {
 | |
| 	ipvtng = 3;
 | |
| 	npvts = f2cmin(*n,*m);
 | |
|     } else if (lsame_(pivtng, "F")) {
 | |
| 	ipvtng = 3;
 | |
| 	npvts = f2cmin(*n,*m);
 | |
|     } else {
 | |
| 	ipvtng = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode GRADE */
 | |
| 
 | |
|     if (lsame_(grade, "N")) {
 | |
| 	igrade = 0;
 | |
|     } else if (lsame_(grade, "L")) {
 | |
| 	igrade = 1;
 | |
|     } else if (lsame_(grade, "R")) {
 | |
| 	igrade = 2;
 | |
|     } else if (lsame_(grade, "B")) {
 | |
| 	igrade = 3;
 | |
|     } else if (lsame_(grade, "E")) {
 | |
| 	igrade = 4;
 | |
|     } else if (lsame_(grade, "H")) {
 | |
| 	igrade = 5;
 | |
|     } else if (lsame_(grade, "S")) {
 | |
| 	igrade = 6;
 | |
|     } else {
 | |
| 	igrade = -1;
 | |
|     }
 | |
| 
 | |
| /*     Decode PACK */
 | |
| 
 | |
|     if (lsame_(pack, "N")) {
 | |
| 	ipack = 0;
 | |
|     } else if (lsame_(pack, "U")) {
 | |
| 	ipack = 1;
 | |
|     } else if (lsame_(pack, "L")) {
 | |
| 	ipack = 2;
 | |
|     } else if (lsame_(pack, "C")) {
 | |
| 	ipack = 3;
 | |
|     } else if (lsame_(pack, "R")) {
 | |
| 	ipack = 4;
 | |
|     } else if (lsame_(pack, "B")) {
 | |
| 	ipack = 5;
 | |
|     } else if (lsame_(pack, "Q")) {
 | |
| 	ipack = 6;
 | |
|     } else if (lsame_(pack, "Z")) {
 | |
| 	ipack = 7;
 | |
|     } else {
 | |
| 	ipack = -1;
 | |
|     }
 | |
| 
 | |
| /*     Set certain internal parameters */
 | |
| 
 | |
|     mnmin = f2cmin(*m,*n);
 | |
| /* Computing MIN */
 | |
|     i__1 = *kl, i__2 = *m - 1;
 | |
|     kll = f2cmin(i__1,i__2);
 | |
| /* Computing MIN */
 | |
|     i__1 = *ku, i__2 = *n - 1;
 | |
|     kuu = f2cmin(i__1,i__2);
 | |
| 
 | |
| /*     If inv(DL) is used, check to see if DL has a zero entry. */
 | |
| 
 | |
|     dzero = FALSE_;
 | |
|     if (igrade == 4 && *model == 0) {
 | |
| 	i__1 = *m;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = i__;
 | |
| 	    if (dl[i__2].r == 0. && dl[i__2].i == 0.) {
 | |
| 		dzero = TRUE_;
 | |
| 	    }
 | |
| /* L10: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Check values in IPIVOT */
 | |
| 
 | |
|     badpvt = FALSE_;
 | |
|     if (ipvtng > 0) {
 | |
| 	i__1 = npvts;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    if (ipivot[j] <= 0 || ipivot[j] > npvts) {
 | |
| 		badpvt = TRUE_;
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Set INFO if an error */
 | |
| 
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*m != *n && (isym == 0 || isym == 2)) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (idist == -1) {
 | |
| 	*info = -3;
 | |
|     } else if (isym == -1) {
 | |
| 	*info = -5;
 | |
|     } else if (*mode < -6 || *mode > 6) {
 | |
| 	*info = -7;
 | |
|     } else if (*mode != -6 && *mode != 0 && *mode != 6 && *cond < 1.) {
 | |
| 	*info = -8;
 | |
|     } else if (*mode != -6 && *mode != 0 && *mode != 6 && irsign == -1) {
 | |
| 	*info = -10;
 | |
|     } else if (igrade == -1 || igrade == 4 && *m != *n || (igrade == 1 || 
 | |
| 	    igrade == 2 || igrade == 3 || igrade == 4 || igrade == 6) && isym 
 | |
| 	    == 0 || (igrade == 1 || igrade == 2 || igrade == 3 || igrade == 4 
 | |
| 	    || igrade == 5) && isym == 2) {
 | |
| 	*info = -11;
 | |
|     } else if (igrade == 4 && dzero) {
 | |
| 	*info = -12;
 | |
|     } else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || 
 | |
| 	    igrade == 6) && (*model < -6 || *model > 6)) {
 | |
| 	*info = -13;
 | |
|     } else if ((igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || 
 | |
| 	    igrade == 6) && (*model != -6 && *model != 0 && *model != 6) && *
 | |
| 	    condl < 1.) {
 | |
| 	*info = -14;
 | |
|     } else if ((igrade == 2 || igrade == 3) && (*moder < -6 || *moder > 6)) {
 | |
| 	*info = -16;
 | |
|     } else if ((igrade == 2 || igrade == 3) && (*moder != -6 && *moder != 0 &&
 | |
| 	     *moder != 6) && *condr < 1.) {
 | |
| 	*info = -17;
 | |
|     } else if (ipvtng == -1 || ipvtng == 3 && *m != *n || (ipvtng == 1 || 
 | |
| 	    ipvtng == 2) && (isym == 0 || isym == 2)) {
 | |
| 	*info = -18;
 | |
|     } else if (ipvtng != 0 && badpvt) {
 | |
| 	*info = -19;
 | |
|     } else if (*kl < 0) {
 | |
| 	*info = -20;
 | |
|     } else if (*ku < 0 || (isym == 0 || isym == 2) && *kl != *ku) {
 | |
| 	*info = -21;
 | |
|     } else if (*sparse < 0. || *sparse > 1.) {
 | |
| 	*info = -22;
 | |
|     } else if (ipack == -1 || (ipack == 1 || ipack == 2 || ipack == 5 || 
 | |
| 	    ipack == 6) && isym == 1 || ipack == 3 && isym == 1 && (*kl != 0 
 | |
| 	    || *m != *n) || ipack == 4 && isym == 1 && (*ku != 0 || *m != *n))
 | |
| 	     {
 | |
| 	*info = -24;
 | |
|     } else if ((ipack == 0 || ipack == 1 || ipack == 2) && *lda < f2cmax(1,*m) ||
 | |
| 	     (ipack == 3 || ipack == 4) && *lda < 1 || (ipack == 5 || ipack ==
 | |
| 	     6) && *lda < kuu + 1 || ipack == 7 && *lda < kll + kuu + 1) {
 | |
| 	*info = -26;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZLATMR", &i__1, 6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Decide if we can pivot consistently */
 | |
| 
 | |
|     fulbnd = FALSE_;
 | |
|     if (kuu == *n - 1 && kll == *m - 1) {
 | |
| 	fulbnd = TRUE_;
 | |
|     }
 | |
| 
 | |
| /*     Initialize random number generator */
 | |
| 
 | |
|     for (i__ = 1; i__ <= 4; ++i__) {
 | |
| 	iseed[i__] = (i__1 = iseed[i__], abs(i__1)) % 4096;
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
|     iseed[4] = (iseed[4] / 2 << 1) + 1;
 | |
| 
 | |
| /*     2)      Set up D, DL, and DR, if indicated. */
 | |
| 
 | |
| /*             Compute D according to COND and MODE */
 | |
| 
 | |
|     zlatm1_(mode, cond, &irsign, &idist, &iseed[1], &d__[1], &mnmin, info);
 | |
|     if (*info != 0) {
 | |
| 	*info = 1;
 | |
| 	return;
 | |
|     }
 | |
|     if (*mode != 0 && *mode != -6 && *mode != 6) {
 | |
| 
 | |
| /*        Scale by DMAX */
 | |
| 
 | |
| 	temp = z_abs(&d__[1]);
 | |
| 	i__1 = mnmin;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| /* Computing MAX */
 | |
| 	    d__1 = temp, d__2 = z_abs(&d__[i__]);
 | |
| 	    temp = f2cmax(d__1,d__2);
 | |
| /* L40: */
 | |
| 	}
 | |
| 	if (temp == 0. && (dmax__->r != 0. || dmax__->i != 0.)) {
 | |
| 	    *info = 2;
 | |
| 	    return;
 | |
| 	}
 | |
| 	if (temp != 0.) {
 | |
| 	    z__1.r = dmax__->r / temp, z__1.i = dmax__->i / temp;
 | |
| 	    calpha.r = z__1.r, calpha.i = z__1.i;
 | |
| 	} else {
 | |
| 	    calpha.r = 1., calpha.i = 0.;
 | |
| 	}
 | |
| 	i__1 = mnmin;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = i__;
 | |
| 	    i__3 = i__;
 | |
| 	    z__1.r = calpha.r * d__[i__3].r - calpha.i * d__[i__3].i, z__1.i =
 | |
| 		     calpha.r * d__[i__3].i + calpha.i * d__[i__3].r;
 | |
| 	    d__[i__2].r = z__1.r, d__[i__2].i = z__1.i;
 | |
| /* L50: */
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     If matrix Hermitian, make D real */
 | |
| 
 | |
|     if (isym == 0) {
 | |
| 	i__1 = mnmin;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = i__;
 | |
| 	    i__3 = i__;
 | |
| 	    d__1 = d__[i__3].r;
 | |
| 	    d__[i__2].r = d__1, d__[i__2].i = 0.;
 | |
| /* L60: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute DL if grading set */
 | |
| 
 | |
|     if (igrade == 1 || igrade == 3 || igrade == 4 || igrade == 5 || igrade == 
 | |
| 	    6) {
 | |
| 	zlatm1_(model, condl, &c__0, &idist, &iseed[1], &dl[1], m, info);
 | |
| 	if (*info != 0) {
 | |
| 	    *info = 3;
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute DR if grading set */
 | |
| 
 | |
|     if (igrade == 2 || igrade == 3) {
 | |
| 	zlatm1_(moder, condr, &c__0, &idist, &iseed[1], &dr[1], n, info);
 | |
| 	if (*info != 0) {
 | |
| 	    *info = 4;
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     3)     Generate IWORK if pivoting */
 | |
| 
 | |
|     if (ipvtng > 0) {
 | |
| 	i__1 = npvts;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    iwork[i__] = i__;
 | |
| /* L70: */
 | |
| 	}
 | |
| 	if (fulbnd) {
 | |
| 	    i__1 = npvts;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		k = ipivot[i__];
 | |
| 		j = iwork[i__];
 | |
| 		iwork[i__] = iwork[k];
 | |
| 		iwork[k] = j;
 | |
| /* L80: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    for (i__ = npvts; i__ >= 1; --i__) {
 | |
| 		k = ipivot[i__];
 | |
| 		j = iwork[i__];
 | |
| 		iwork[i__] = iwork[k];
 | |
| 		iwork[k] = j;
 | |
| /* L90: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     4)      Generate matrices for each kind of PACKing */
 | |
| /*             Always sweep matrix columnwise (if symmetric, upper */
 | |
| /*             half only) so that matrix generated does not depend */
 | |
| /*             on PACK */
 | |
| 
 | |
|     if (fulbnd) {
 | |
| 
 | |
| /*        Use ZLATM3 so matrices generated with differing PIVOTing only */
 | |
| /*        differ only in the order of their rows and/or columns. */
 | |
| 
 | |
| 	if (ipack == 0) {
 | |
| 	    if (isym == 0) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
 | |
| 				dr[1], &ipvtng, &iwork[1], sparse);
 | |
| 			ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 			i__3 = isub + jsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 			i__3 = jsub + isub * a_dim1;
 | |
| 			d_cnjg(&z__1, &ctemp);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| /* L100: */
 | |
| 		    }
 | |
| /* L110: */
 | |
| 		}
 | |
| 	    } else if (isym == 1) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *m;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
 | |
| 				dr[1], &ipvtng, &iwork[1], sparse);
 | |
| 			ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 			i__3 = isub + jsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| /* L120: */
 | |
| 		    }
 | |
| /* L130: */
 | |
| 		}
 | |
| 	    } else if (isym == 2) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
 | |
| 				dr[1], &ipvtng, &iwork[1], sparse);
 | |
| 			ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 			i__3 = isub + jsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 			i__3 = jsub + isub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| /* L140: */
 | |
| 		    }
 | |
| /* L150: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 1) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
 | |
| 			    , &ipvtng, &iwork[1], sparse);
 | |
| 		    ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 		    mnsub = f2cmin(isub,jsub);
 | |
| 		    mxsub = f2cmax(isub,jsub);
 | |
| 		    if (mxsub == isub && isym == 0) {
 | |
| 			i__3 = mnsub + mxsub * a_dim1;
 | |
| 			d_cnjg(&z__1, &ctemp);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		    } else {
 | |
| 			i__3 = mnsub + mxsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 		    }
 | |
| 		    if (mnsub != mxsub) {
 | |
| 			i__3 = mxsub + mnsub * a_dim1;
 | |
| 			a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 		    }
 | |
| /* L160: */
 | |
| 		}
 | |
| /* L170: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 2) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
 | |
| 			    , &ipvtng, &iwork[1], sparse);
 | |
| 		    ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 		    mnsub = f2cmin(isub,jsub);
 | |
| 		    mxsub = f2cmax(isub,jsub);
 | |
| 		    if (mxsub == jsub && isym == 0) {
 | |
| 			i__3 = mxsub + mnsub * a_dim1;
 | |
| 			d_cnjg(&z__1, &ctemp);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		    } else {
 | |
| 			i__3 = mxsub + mnsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 		    }
 | |
| 		    if (mnsub != mxsub) {
 | |
| 			i__3 = mnsub + mxsub * a_dim1;
 | |
| 			a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 		    }
 | |
| /* L180: */
 | |
| 		}
 | |
| /* L190: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 3) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
 | |
| 			    , &ipvtng, &iwork[1], sparse);
 | |
| 		    ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 
 | |
| /*                 Compute K = location of (ISUB,JSUB) entry in packed */
 | |
| /*                 array */
 | |
| 
 | |
| 		    mnsub = f2cmin(isub,jsub);
 | |
| 		    mxsub = f2cmax(isub,jsub);
 | |
| 		    k = mxsub * (mxsub - 1) / 2 + mnsub;
 | |
| 
 | |
| /*                 Convert K to (IISUB,JJSUB) location */
 | |
| 
 | |
| 		    jjsub = (k - 1) / *lda + 1;
 | |
| 		    iisub = k - *lda * (jjsub - 1);
 | |
| 
 | |
| 		    if (mxsub == isub && isym == 0) {
 | |
| 			i__3 = iisub + jjsub * a_dim1;
 | |
| 			d_cnjg(&z__1, &ctemp);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		    } else {
 | |
| 			i__3 = iisub + jjsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 		    }
 | |
| /* L200: */
 | |
| 		}
 | |
| /* L210: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 4) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
 | |
| 			    , &ipvtng, &iwork[1], sparse);
 | |
| 		    ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 
 | |
| /*                 Compute K = location of (I,J) entry in packed array */
 | |
| 
 | |
| 		    mnsub = f2cmin(isub,jsub);
 | |
| 		    mxsub = f2cmax(isub,jsub);
 | |
| 		    if (mnsub == 1) {
 | |
| 			k = mxsub;
 | |
| 		    } else {
 | |
| 			k = *n * (*n + 1) / 2 - (*n - mnsub + 1) * (*n - 
 | |
| 				mnsub + 2) / 2 + mxsub - mnsub + 1;
 | |
| 		    }
 | |
| 
 | |
| /*                 Convert K to (IISUB,JJSUB) location */
 | |
| 
 | |
| 		    jjsub = (k - 1) / *lda + 1;
 | |
| 		    iisub = k - *lda * (jjsub - 1);
 | |
| 
 | |
| 		    if (mxsub == jsub && isym == 0) {
 | |
| 			i__3 = iisub + jjsub * a_dim1;
 | |
| 			d_cnjg(&z__1, &ctemp);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		    } else {
 | |
| 			i__3 = iisub + jjsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 		    }
 | |
| /* L220: */
 | |
| 		}
 | |
| /* L230: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 5) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = j - kuu; i__ <= i__2; ++i__) {
 | |
| 		    if (i__ < 1) {
 | |
| 			i__3 = j - i__ + 1 + (i__ + *n) * a_dim1;
 | |
| 			a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 		    } else {
 | |
| 			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
 | |
| 				dr[1], &ipvtng, &iwork[1], sparse);
 | |
| 			ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 			mnsub = f2cmin(isub,jsub);
 | |
| 			mxsub = f2cmax(isub,jsub);
 | |
| 			if (mxsub == jsub && isym == 0) {
 | |
| 			    i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
 | |
| 			    d_cnjg(&z__1, &ctemp);
 | |
| 			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			} else {
 | |
| 			    i__3 = mxsub - mnsub + 1 + mnsub * a_dim1;
 | |
| 			    a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 			}
 | |
| 		    }
 | |
| /* L240: */
 | |
| 		}
 | |
| /* L250: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 6) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = j - kuu; i__ <= i__2; ++i__) {
 | |
| 		    zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 			    idist, &iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
 | |
| 			    , &ipvtng, &iwork[1], sparse);
 | |
| 		    ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 		    mnsub = f2cmin(isub,jsub);
 | |
| 		    mxsub = f2cmax(isub,jsub);
 | |
| 		    if (mxsub == isub && isym == 0) {
 | |
| 			i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
 | |
| 			d_cnjg(&z__1, &ctemp);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		    } else {
 | |
| 			i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 		    }
 | |
| /* L260: */
 | |
| 		}
 | |
| /* L270: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 7) {
 | |
| 
 | |
| 	    if (isym != 1) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j;
 | |
| 		    for (i__ = j - kuu; i__ <= i__2; ++i__) {
 | |
| 			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
 | |
| 				dr[1], &ipvtng, &iwork[1], sparse);
 | |
| 			ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 			mnsub = f2cmin(isub,jsub);
 | |
| 			mxsub = f2cmax(isub,jsub);
 | |
| 			if (i__ < 1) {
 | |
| 			    i__3 = j - i__ + 1 + kuu + (i__ + *n) * a_dim1;
 | |
| 			    a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 			}
 | |
| 			if (mxsub == isub && isym == 0) {
 | |
| 			    i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
 | |
| 			    d_cnjg(&z__1, &ctemp);
 | |
| 			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			} else {
 | |
| 			    i__3 = mnsub - mxsub + kuu + 1 + mxsub * a_dim1;
 | |
| 			    a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 			}
 | |
| 			if (i__ >= 1 && mnsub != mxsub) {
 | |
| 			    if (mnsub == isub && isym == 0) {
 | |
| 				i__3 = mxsub - mnsub + 1 + kuu + mnsub * 
 | |
| 					a_dim1;
 | |
| 				d_cnjg(&z__1, &ctemp);
 | |
| 				a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			    } else {
 | |
| 				i__3 = mxsub - mnsub + 1 + kuu + mnsub * 
 | |
| 					a_dim1;
 | |
| 				a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| 			    }
 | |
| 			}
 | |
| /* L280: */
 | |
| 		    }
 | |
| /* L290: */
 | |
| 		}
 | |
| 	    } else if (isym == 1) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j + kll;
 | |
| 		    for (i__ = j - kuu; i__ <= i__2; ++i__) {
 | |
| 			zlatm3_(&z__1, m, n, &i__, &j, &isub, &jsub, kl, ku, &
 | |
| 				idist, &iseed[1], &d__[1], &igrade, &dl[1], &
 | |
| 				dr[1], &ipvtng, &iwork[1], sparse);
 | |
| 			ctemp.r = z__1.r, ctemp.i = z__1.i;
 | |
| 			i__3 = isub - jsub + kuu + 1 + jsub * a_dim1;
 | |
| 			a[i__3].r = ctemp.r, a[i__3].i = ctemp.i;
 | |
| /* L300: */
 | |
| 		    }
 | |
| /* L310: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Use ZLATM2 */
 | |
| 
 | |
| 	if (ipack == 0) {
 | |
| 	    if (isym == 0) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ + j * a_dim1;
 | |
| 			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			d_cnjg(&z__1, &a[i__ + j * a_dim1]);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| /* L320: */
 | |
| 		    }
 | |
| /* L330: */
 | |
| 		}
 | |
| 	    } else if (isym == 1) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *m;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ + j * a_dim1;
 | |
| 			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| /* L340: */
 | |
| 		    }
 | |
| /* L350: */
 | |
| 		}
 | |
| 	    } else if (isym == 2) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ + j * a_dim1;
 | |
| 			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			i__4 = i__ + j * a_dim1;
 | |
| 			a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
 | |
| /* L360: */
 | |
| 		    }
 | |
| /* L370: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 1) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    i__3 = i__ + j * a_dim1;
 | |
| 		    zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1], 
 | |
| 			    &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
 | |
| 			    1], sparse);
 | |
| 		    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		    if (i__ != j) {
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 		    }
 | |
| /* L380: */
 | |
| 		}
 | |
| /* L390: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 2) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    if (isym == 0) {
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			zlatm2_(&z__2, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			d_cnjg(&z__1, &z__2);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		    } else {
 | |
| 			i__3 = j + i__ * a_dim1;
 | |
| 			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 		    }
 | |
| 		    if (i__ != j) {
 | |
| 			i__3 = i__ + j * a_dim1;
 | |
| 			a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 		    }
 | |
| /* L400: */
 | |
| 		}
 | |
| /* L410: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 3) {
 | |
| 
 | |
| 	    isub = 0;
 | |
| 	    jsub = 1;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    ++isub;
 | |
| 		    if (isub > *lda) {
 | |
| 			isub = 1;
 | |
| 			++jsub;
 | |
| 		    }
 | |
| 		    i__3 = isub + jsub * a_dim1;
 | |
| 		    zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1], 
 | |
| 			    &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
 | |
| 			    1], sparse);
 | |
| 		    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| /* L420: */
 | |
| 		}
 | |
| /* L430: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 4) {
 | |
| 
 | |
| 	    if (isym == 0 || isym == 2) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 
 | |
| /*                    Compute K = location of (I,J) entry in packed array */
 | |
| 
 | |
| 			if (i__ == 1) {
 | |
| 			    k = j;
 | |
| 			} else {
 | |
| 			    k = *n * (*n + 1) / 2 - (*n - i__ + 1) * (*n - 
 | |
| 				    i__ + 2) / 2 + j - i__ + 1;
 | |
| 			}
 | |
| 
 | |
| /*                    Convert K to (ISUB,JSUB) location */
 | |
| 
 | |
| 			jsub = (k - 1) / *lda + 1;
 | |
| 			isub = k - *lda * (jsub - 1);
 | |
| 
 | |
| 			i__3 = isub + jsub * a_dim1;
 | |
| 			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			if (isym == 0) {
 | |
| 			    i__3 = isub + jsub * a_dim1;
 | |
| 			    d_cnjg(&z__1, &a[isub + jsub * a_dim1]);
 | |
| 			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			}
 | |
| /* L440: */
 | |
| 		    }
 | |
| /* L450: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		isub = 0;
 | |
| 		jsub = 1;
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *m;
 | |
| 		    for (i__ = j; i__ <= i__2; ++i__) {
 | |
| 			++isub;
 | |
| 			if (isub > *lda) {
 | |
| 			    isub = 1;
 | |
| 			    ++jsub;
 | |
| 			}
 | |
| 			i__3 = isub + jsub * a_dim1;
 | |
| 			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| /* L460: */
 | |
| 		    }
 | |
| /* L470: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 5) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = j - kuu; i__ <= i__2; ++i__) {
 | |
| 		    if (i__ < 1) {
 | |
| 			i__3 = j - i__ + 1 + (i__ + *n) * a_dim1;
 | |
| 			a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 		    } else {
 | |
| 			if (isym == 0) {
 | |
| 			    i__3 = j - i__ + 1 + i__ * a_dim1;
 | |
| 			    zlatm2_(&z__2, m, n, &i__, &j, kl, ku, &idist, &
 | |
| 				    iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
 | |
| 				    , &ipvtng, &iwork[1], sparse);
 | |
| 			    d_cnjg(&z__1, &z__2);
 | |
| 			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			} else {
 | |
| 			    i__3 = j - i__ + 1 + i__ * a_dim1;
 | |
| 			    zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &
 | |
| 				    iseed[1], &d__[1], &igrade, &dl[1], &dr[1]
 | |
| 				    , &ipvtng, &iwork[1], sparse);
 | |
| 			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			}
 | |
| 		    }
 | |
| /* L480: */
 | |
| 		}
 | |
| /* L490: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 6) {
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = j;
 | |
| 		for (i__ = j - kuu; i__ <= i__2; ++i__) {
 | |
| 		    i__3 = i__ - j + kuu + 1 + j * a_dim1;
 | |
| 		    zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[1], 
 | |
| 			    &d__[1], &igrade, &dl[1], &dr[1], &ipvtng, &iwork[
 | |
| 			    1], sparse);
 | |
| 		    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| /* L500: */
 | |
| 		}
 | |
| /* L510: */
 | |
| 	    }
 | |
| 
 | |
| 	} else if (ipack == 7) {
 | |
| 
 | |
| 	    if (isym != 1) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j;
 | |
| 		    for (i__ = j - kuu; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ - j + kuu + 1 + j * a_dim1;
 | |
| 			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			if (i__ < 1) {
 | |
| 			    i__3 = j - i__ + 1 + kuu + (i__ + *n) * a_dim1;
 | |
| 			    a[i__3].r = 0., a[i__3].i = 0.;
 | |
| 			}
 | |
| 			if (i__ >= 1 && i__ != j) {
 | |
| 			    if (isym == 0) {
 | |
| 				i__3 = j - i__ + 1 + kuu + i__ * a_dim1;
 | |
| 				d_cnjg(&z__1, &a[i__ - j + kuu + 1 + j * 
 | |
| 					a_dim1]);
 | |
| 				a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| 			    } else {
 | |
| 				i__3 = j - i__ + 1 + kuu + i__ * a_dim1;
 | |
| 				i__4 = i__ - j + kuu + 1 + j * a_dim1;
 | |
| 				a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
 | |
| 			    }
 | |
| 			}
 | |
| /* L520: */
 | |
| 		    }
 | |
| /* L530: */
 | |
| 		}
 | |
| 	    } else if (isym == 1) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = j + kll;
 | |
| 		    for (i__ = j - kuu; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ - j + kuu + 1 + j * a_dim1;
 | |
| 			zlatm2_(&z__1, m, n, &i__, &j, kl, ku, &idist, &iseed[
 | |
| 				1], &d__[1], &igrade, &dl[1], &dr[1], &ipvtng,
 | |
| 				 &iwork[1], sparse);
 | |
| 			a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| /* L540: */
 | |
| 		    }
 | |
| /* L550: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     5)      Scaling the norm */
 | |
| 
 | |
|     if (ipack == 0) {
 | |
| 	onorm = zlange_("M", m, n, &a[a_offset], lda, tempa);
 | |
|     } else if (ipack == 1) {
 | |
| 	onorm = zlansy_("M", "U", n, &a[a_offset], lda, tempa);
 | |
|     } else if (ipack == 2) {
 | |
| 	onorm = zlansy_("M", "L", n, &a[a_offset], lda, tempa);
 | |
|     } else if (ipack == 3) {
 | |
| 	onorm = zlansp_("M", "U", n, &a[a_offset], tempa);
 | |
|     } else if (ipack == 4) {
 | |
| 	onorm = zlansp_("M", "L", n, &a[a_offset], tempa);
 | |
|     } else if (ipack == 5) {
 | |
| 	onorm = zlansb_("M", "L", n, &kll, &a[a_offset], lda, tempa);
 | |
|     } else if (ipack == 6) {
 | |
| 	onorm = zlansb_("M", "U", n, &kuu, &a[a_offset], lda, tempa);
 | |
|     } else if (ipack == 7) {
 | |
| 	onorm = zlangb_("M", n, &kll, &kuu, &a[a_offset], lda, tempa);
 | |
|     }
 | |
| 
 | |
|     if (*anorm >= 0.) {
 | |
| 
 | |
| 	if (*anorm > 0. && onorm == 0.) {
 | |
| 
 | |
| /*           Desired scaling impossible */
 | |
| 
 | |
| 	    *info = 5;
 | |
| 	    return;
 | |
| 
 | |
| 	} else if (*anorm > 1. && onorm < 1. || *anorm < 1. && onorm > 1.) {
 | |
| 
 | |
| /*           Scale carefully to avoid over / underflow */
 | |
| 
 | |
| 	    if (ipack <= 2) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    d__1 = 1. / onorm;
 | |
| 		    zdscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
 | |
| 		    zdscal_(m, anorm, &a[j * a_dim1 + 1], &c__1);
 | |
| /* L560: */
 | |
| 		}
 | |
| 
 | |
| 	    } else if (ipack == 3 || ipack == 4) {
 | |
| 
 | |
| 		i__1 = *n * (*n + 1) / 2;
 | |
| 		d__1 = 1. / onorm;
 | |
| 		zdscal_(&i__1, &d__1, &a[a_offset], &c__1);
 | |
| 		i__1 = *n * (*n + 1) / 2;
 | |
| 		zdscal_(&i__1, anorm, &a[a_offset], &c__1);
 | |
| 
 | |
| 	    } else if (ipack >= 5) {
 | |
| 
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = kll + kuu + 1;
 | |
| 		    d__1 = 1. / onorm;
 | |
| 		    zdscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
 | |
| 		    i__2 = kll + kuu + 1;
 | |
| 		    zdscal_(&i__2, anorm, &a[j * a_dim1 + 1], &c__1);
 | |
| /* L570: */
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Scale straightforwardly */
 | |
| 
 | |
| 	    if (ipack <= 2) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    d__1 = *anorm / onorm;
 | |
| 		    zdscal_(m, &d__1, &a[j * a_dim1 + 1], &c__1);
 | |
| /* L580: */
 | |
| 		}
 | |
| 
 | |
| 	    } else if (ipack == 3 || ipack == 4) {
 | |
| 
 | |
| 		i__1 = *n * (*n + 1) / 2;
 | |
| 		d__1 = *anorm / onorm;
 | |
| 		zdscal_(&i__1, &d__1, &a[a_offset], &c__1);
 | |
| 
 | |
| 	    } else if (ipack >= 5) {
 | |
| 
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = kll + kuu + 1;
 | |
| 		    d__1 = *anorm / onorm;
 | |
| 		    zdscal_(&i__2, &d__1, &a[j * a_dim1 + 1], &c__1);
 | |
| /* L590: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     End of ZLATMR */
 | |
| 
 | |
|     return;
 | |
| } /* zlatmr_ */
 | |
| 
 |