439 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			439 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORHR_COL
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORHR_COL + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorhr_col.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorhr_col.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorhr_col.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER           INFO, LDA, LDT, M, N, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL              A( LDA, * ), D( * ), T( LDT, * )
 | |
| *       ..
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  SORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns
 | |
| *>  as input, stored in A, and performs Householder Reconstruction (HR),
 | |
| *>  i.e. reconstructs Householder vectors V(i) implicitly representing
 | |
| *>  another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
 | |
| *>  where S is an N-by-N diagonal matrix with diagonal entries
 | |
| *>  equal to +1 or -1. The Householder vectors (columns V(i) of V) are
 | |
| *>  stored in A on output, and the diagonal entries of S are stored in D.
 | |
| *>  Block reflectors are also returned in T
 | |
| *>  (same output format as SGEQRT).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A. M >= N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The column block size to be used in the reconstruction
 | |
| *>          of Householder column vector blocks in the array A and
 | |
| *>          corresponding block reflectors in the array T. NB >= 1.
 | |
| *>          (Note that if NB > N, then N is used instead of NB
 | |
| *>          as the column block size.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>
 | |
| *>          On entry:
 | |
| *>
 | |
| *>             The array A contains an M-by-N orthonormal matrix Q_in,
 | |
| *>             i.e the columns of A are orthogonal unit vectors.
 | |
| *>
 | |
| *>          On exit:
 | |
| *>
 | |
| *>             The elements below the diagonal of A represent the unit
 | |
| *>             lower-trapezoidal matrix V of Householder column vectors
 | |
| *>             V(i). The unit diagonal entries of V are not stored
 | |
| *>             (same format as the output below the diagonal in A from
 | |
| *>             SGEQRT). The matrix T and the matrix V stored on output
 | |
| *>             in A implicitly define Q_out.
 | |
| *>
 | |
| *>             The elements above the diagonal contain the factor U
 | |
| *>             of the "modified" LU-decomposition:
 | |
| *>                Q_in - ( S ) = V * U
 | |
| *>                       ( 0 )
 | |
| *>             where 0 is a (M-N)-by-(M-N) zero matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array,
 | |
| *>          dimension (LDT, N)
 | |
| *>
 | |
| *>          Let NOCB = Number_of_output_col_blocks
 | |
| *>                   = CEIL(N/NB)
 | |
| *>
 | |
| *>          On exit, T(1:NB, 1:N) contains NOCB upper-triangular
 | |
| *>          block reflectors used to define Q_out stored in compact
 | |
| *>          form as a sequence of upper-triangular NB-by-NB column
 | |
| *>          blocks (same format as the output T in SGEQRT).
 | |
| *>          The matrix T and the matrix V stored on output in A
 | |
| *>          implicitly define Q_out. NOTE: The lower triangles
 | |
| *>          below the upper-triangular blocks will be filled with
 | |
| *>          zeros. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.
 | |
| *>          LDT >= max(1,min(NB,N)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension min(M,N).
 | |
| *>          The elements can be only plus or minus one.
 | |
| *>
 | |
| *>          D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
 | |
| *>          1 <= i <= min(M,N), and Q_in_i is Q_in after performing
 | |
| *>          i-1 steps of “modified” Gaussian elimination.
 | |
| *>          See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> The computed M-by-M orthogonal factor Q_out is defined implicitly as
 | |
| *> a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in
 | |
| *> the compact WY-representation format in the corresponding blocks of
 | |
| *> matrices V (stored in A) and T.
 | |
| *>
 | |
| *> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
 | |
| *> matrix A contains the column vectors V(i) in NB-size column
 | |
| *> blocks VB(j). For example, VB(1) contains the columns
 | |
| *> V(1), V(2), ... V(NB). NOTE: The unit entries on
 | |
| *> the diagonal of Y are not stored in A.
 | |
| *>
 | |
| *> The number of column blocks is
 | |
| *>
 | |
| *>     NOCB = Number_of_output_col_blocks = CEIL(N/NB)
 | |
| *>
 | |
| *> where each block is of order NB except for the last block, which
 | |
| *> is of order LAST_NB = N - (NOCB-1)*NB.
 | |
| *>
 | |
| *> For example, if M=6,  N=5 and NB=2, the matrix V is
 | |
| *>
 | |
| *>
 | |
| *>     V = (    VB(1),   VB(2), VB(3) ) =
 | |
| *>
 | |
| *>       = (   1                      )
 | |
| *>         ( v21    1                 )
 | |
| *>         ( v31  v32    1            )
 | |
| *>         ( v41  v42  v43   1        )
 | |
| *>         ( v51  v52  v53  v54    1  )
 | |
| *>         ( v61  v62  v63  v54   v65 )
 | |
| *>
 | |
| *>
 | |
| *> For each of the column blocks VB(i), an upper-triangular block
 | |
| *> reflector TB(i) is computed. These blocks are stored as
 | |
| *> a sequence of upper-triangular column blocks in the NB-by-N
 | |
| *> matrix T. The size of each TB(i) block is NB-by-NB, except
 | |
| *> for the last block, whose size is LAST_NB-by-LAST_NB.
 | |
| *>
 | |
| *> For example, if M=6,  N=5 and NB=2, the matrix T is
 | |
| *>
 | |
| *>     T  = (    TB(1),    TB(2), TB(3) ) =
 | |
| *>
 | |
| *>        = ( t11  t12  t13  t14   t15  )
 | |
| *>          (      t22       t24        )
 | |
| *>
 | |
| *>
 | |
| *> The M-by-M factor Q_out is given as a product of NOCB
 | |
| *> orthogonal M-by-M matrices Q_out(i).
 | |
| *>
 | |
| *>     Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
 | |
| *>
 | |
| *> where each matrix Q_out(i) is given by the WY-representation
 | |
| *> using corresponding blocks from the matrices V and T:
 | |
| *>
 | |
| *>     Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
 | |
| *>
 | |
| *> where I is the identity matrix. Here is the formula with matrix
 | |
| *> dimensions:
 | |
| *>
 | |
| *>  Q(i){M-by-M} = I{M-by-M} -
 | |
| *>    VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
 | |
| *>
 | |
| *> where INB = NB, except for the last block NOCB
 | |
| *> for which INB=LAST_NB.
 | |
| *>
 | |
| *> =====
 | |
| *> NOTE:
 | |
| *> =====
 | |
| *>
 | |
| *> If Q_in is the result of doing a QR factorization
 | |
| *> B = Q_in * R_in, then:
 | |
| *>
 | |
| *> B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.
 | |
| *>
 | |
| *> So if one wants to interpret Q_out as the result
 | |
| *> of the QR factorization of B, then the corresponding R_out
 | |
| *> should be equal to R_out = S * R_in, i.e. some rows of R_in
 | |
| *> should be multiplied by -1.
 | |
| *>
 | |
| *> For the details of the algorithm, see [1].
 | |
| *>
 | |
| *> [1] "Reconstructing Householder vectors from tall-skinny QR",
 | |
| *>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
 | |
| *>     E. Solomonik, J. Parallel Distrib. Comput.,
 | |
| *>     vol. 85, pp. 3-31, 2015.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup singleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> November   2019, Igor Kozachenko,
 | |
| *>            Computer Science Division,
 | |
| *>            University of California, Berkeley
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER           INFO, LDA, LDT, M, N, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL              A( LDA, * ), D( * ), T( LDT, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
 | |
|      $                   NPLUSONE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SLAORHR_COL_GETRFNP, SSCAL, STRSM,
 | |
|      $XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NB.LT.1 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
| *     Handle error in the input parameters.
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SORHR_COL', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N ).EQ.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     On input, the M-by-N matrix A contains the orthogonal
 | |
| *     M-by-N matrix Q_in.
 | |
| *
 | |
| *     (1) Compute the unit lower-trapezoidal V (ones on the diagonal
 | |
| *     are not stored) by performing the "modified" LU-decomposition.
 | |
| *
 | |
| *     Q_in - ( S ) = V * U = ( V1 ) * U,
 | |
| *            ( 0 )           ( V2 )
 | |
| *
 | |
| *     where 0 is an (M-N)-by-N zero matrix.
 | |
| *
 | |
| *     (1-1) Factor V1 and U.
 | |
| 
 | |
|       CALL SLAORHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
 | |
| *
 | |
| *     (1-2) Solve for V2.
 | |
| *
 | |
|       IF( M.GT.N ) THEN
 | |
|          CALL STRSM( 'R', 'U', 'N', 'N', M-N, N, ONE, A, LDA,
 | |
|      $               A( N+1, 1 ), LDA )
 | |
|       END IF
 | |
| *
 | |
| *     (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
 | |
| *     as a sequence of upper-triangular blocks with NB-size column
 | |
| *     blocking.
 | |
| *
 | |
| *     Loop over the column blocks of size NB of the array A(1:M,1:N)
 | |
| *     and the array T(1:NB,1:N), JB is the column index of a column
 | |
| *     block, JNB is the column block size at each step JB.
 | |
| *
 | |
|       NPLUSONE = N + 1
 | |
|       DO JB = 1, N, NB
 | |
| *
 | |
| *        (2-0) Determine the column block size JNB.
 | |
| *
 | |
|          JNB = MIN( NPLUSONE-JB, NB )
 | |
| *
 | |
| *        (2-1) Copy the upper-triangular part of the current JNB-by-JNB
 | |
| *        diagonal block U(JB) (of the N-by-N matrix U) stored
 | |
| *        in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
 | |
| *        of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
 | |
| *        column-by-column, total JNB*(JNB+1)/2 elements.
 | |
| *
 | |
|          JBTEMP1 = JB - 1
 | |
|          DO J = JB, JB+JNB-1
 | |
|             CALL SCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
 | |
|          END DO
 | |
| *
 | |
| *        (2-2) Perform on the upper-triangular part of the current
 | |
| *        JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
 | |
| *        in T(1:JNB,JB:JB+JNB-1) the following operation in place:
 | |
| *        (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
 | |
| *        triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
 | |
| *        of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
 | |
| *        diagonal block S(JB) of the N-by-N sign matrix S from the
 | |
| *        right means changing the sign of each J-th column of the block
 | |
| *        U(JB) according to the sign of the diagonal element of the block
 | |
| *        S(JB), i.e. S(J,J) that is stored in the array element D(J).
 | |
| *
 | |
|          DO J = JB, JB+JNB-1
 | |
|             IF( D( J ).EQ.ONE ) THEN
 | |
|                CALL SSCAL( J-JBTEMP1, -ONE, T( 1, J ), 1 )
 | |
|             END IF
 | |
|          END DO
 | |
| *
 | |
| *        (2-3) Perform the triangular solve for the current block
 | |
| *        matrix X(JB):
 | |
| *
 | |
| *               X(JB) * (A(JB)**T) = B(JB), where:
 | |
| *
 | |
| *               A(JB)**T  is a JNB-by-JNB unit upper-triangular
 | |
| *                         coefficient block, and A(JB)=V1(JB), which
 | |
| *                         is a JNB-by-JNB unit lower-triangular block
 | |
| *                         stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
 | |
| *                         The N-by-N matrix V1 is the upper part
 | |
| *                         of the M-by-N lower-trapezoidal matrix V
 | |
| *                         stored in A(1:M,1:N);
 | |
| *
 | |
| *               B(JB)     is a JNB-by-JNB  upper-triangular right-hand
 | |
| *                         side block, B(JB) = (-1)*U(JB)*S(JB), and
 | |
| *                         B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
 | |
| *
 | |
| *               X(JB)     is a JNB-by-JNB upper-triangular solution
 | |
| *                         block, X(JB) is the upper-triangular block
 | |
| *                         reflector T(JB), and X(JB) is stored
 | |
| *                         in T(1:JNB,JB:JB+JNB-1).
 | |
| *
 | |
| *             In other words, we perform the triangular solve for the
 | |
| *             upper-triangular block T(JB):
 | |
| *
 | |
| *               T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
 | |
| *
 | |
| *             Even though the blocks X(JB) and B(JB) are upper-
 | |
| *             triangular, the routine STRSM will access all JNB**2
 | |
| *             elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
 | |
| *             we need to set to zero the elements of the block
 | |
| *             T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
 | |
| *             to STRSM.
 | |
| *
 | |
| *        (2-3a) Set the elements to zero.
 | |
| *
 | |
|          JBTEMP2 = JB - 2
 | |
|          DO J = JB, JB+JNB-2
 | |
|             DO I = J-JBTEMP2, NB
 | |
|                T( I, J ) = ZERO
 | |
|             END DO
 | |
|          END DO
 | |
| *
 | |
| *        (2-3b) Perform the triangular solve.
 | |
| *
 | |
|          CALL STRSM( 'R', 'L', 'T', 'U', JNB, JNB, ONE,
 | |
|      $               A( JB, JB ), LDA, T( 1, JB ), LDT )
 | |
| *
 | |
|       END DO
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORHR_COL
 | |
| *
 | |
|       END
 |