474 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			474 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSTEDC
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSTEDC + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstedc.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstedc.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstedc.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 | |
| *                          LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          COMPZ
 | |
| *       INTEGER            INFO, LDZ, LIWORK, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
 | |
| *> symmetric tridiagonal matrix using the divide and conquer method.
 | |
| *> The eigenvectors of a full or band real symmetric matrix can also be
 | |
| *> found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
 | |
| *> matrix to tridiagonal form.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] COMPZ
 | |
| *> \verbatim
 | |
| *>          COMPZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only.
 | |
| *>          = 'I':  Compute eigenvectors of tridiagonal matrix also.
 | |
| *>          = 'V':  Compute eigenvectors of original dense symmetric
 | |
| *>                  matrix also.  On entry, Z contains the orthogonal
 | |
| *>                  matrix used to reduce the original matrix to
 | |
| *>                  tridiagonal form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The dimension of the symmetric tridiagonal matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the diagonal elements of the tridiagonal matrix.
 | |
| *>          On exit, if INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          On entry, the subdiagonal elements of the tridiagonal matrix.
 | |
| *>          On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
 | |
| *>          On entry, if COMPZ = 'V', then Z contains the orthogonal
 | |
| *>          matrix used in the reduction to tridiagonal form.
 | |
| *>          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
 | |
| *>          orthonormal eigenvectors of the original symmetric matrix,
 | |
| *>          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
 | |
| *>          of the symmetric tridiagonal matrix.
 | |
| *>          If  COMPZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1.
 | |
| *>          If eigenvectors are desired, then LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
 | |
| *>          If COMPZ = 'V' and N > 1 then LWORK must be at least
 | |
| *>                         ( 1 + 3*N + 2*N*lg N + 4*N**2 ),
 | |
| *>                         where lg( N ) = smallest integer k such
 | |
| *>                         that 2**k >= N.
 | |
| *>          If COMPZ = 'I' and N > 1 then LWORK must be at least
 | |
| *>                         ( 1 + 4*N + N**2 ).
 | |
| *>          Note that for COMPZ = 'I' or 'V', then if N is less than or
 | |
| *>          equal to the minimum divide size, usually 25, then LWORK need
 | |
| *>          only be max(1,2*(N-1)).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.
 | |
| *>          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
 | |
| *>          If COMPZ = 'V' and N > 1 then LIWORK must be at least
 | |
| *>                         ( 6 + 6*N + 5*N*lg N ).
 | |
| *>          If COMPZ = 'I' and N > 1 then LIWORK must be at least
 | |
| *>                         ( 3 + 5*N ).
 | |
| *>          Note that for COMPZ = 'I' or 'V', then if N is less than or
 | |
| *>          equal to the minimum divide size, usually 25, then LIWORK
 | |
| *>          need only be 1.
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal size of the IWORK array,
 | |
| *>          returns this value as the first entry of the IWORK array, and
 | |
| *>          no error message related to LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  The algorithm failed to compute an eigenvalue while
 | |
| *>                working on the submatrix lying in rows and columns
 | |
| *>                INFO/(N+1) through mod(INFO,N+1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Jeff Rutter, Computer Science Division, University of California
 | |
| *> at Berkeley, USA \n
 | |
| *>  Modified by Francoise Tisseur, University of Tennessee
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
 | |
|      $                   LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          COMPZ
 | |
|       INTEGER            INFO, LDZ, LIWORK, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
 | |
|      $                   LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
 | |
|       DOUBLE PRECISION   EPS, ORGNRM, P, TINY
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLANST
 | |
|       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
 | |
|      $                   DSTEQR, DSTERF, DSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, INT, LOG, MAX, MOD, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       IF( LSAME( COMPZ, 'N' ) ) THEN
 | |
|          ICOMPZ = 0
 | |
|       ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
 | |
|          ICOMPZ = 1
 | |
|       ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
 | |
|          ICOMPZ = 2
 | |
|       ELSE
 | |
|          ICOMPZ = -1
 | |
|       END IF
 | |
|       IF( ICOMPZ.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( LDZ.LT.1 ) .OR.
 | |
|      $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
| *        Compute the workspace requirements
 | |
| *
 | |
|          SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 )
 | |
|          IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
 | |
|             LIWMIN = 1
 | |
|             LWMIN = 1
 | |
|          ELSE IF( N.LE.SMLSIZ ) THEN
 | |
|             LIWMIN = 1
 | |
|             LWMIN = 2*( N - 1 )
 | |
|          ELSE
 | |
|             LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) )
 | |
|             IF( 2**LGN.LT.N )
 | |
|      $         LGN = LGN + 1
 | |
|             IF( 2**LGN.LT.N )
 | |
|      $         LGN = LGN + 1
 | |
|             IF( ICOMPZ.EQ.1 ) THEN
 | |
|                LWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
 | |
|                LIWMIN = 6 + 6*N + 5*N*LGN
 | |
|             ELSE IF( ICOMPZ.EQ.2 ) THEN
 | |
|                LWMIN = 1 + 4*N + N**2
 | |
|                LIWMIN = 3 + 5*N
 | |
|             END IF
 | |
|          END IF
 | |
|          WORK( 1 ) = LWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
 | |
|             INFO = -8
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
 | |
|             INFO = -10
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSTEDC', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF (LQUERY) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( ICOMPZ.NE.0 )
 | |
|      $      Z( 1, 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     If the following conditional clause is removed, then the routine
 | |
| *     will use the Divide and Conquer routine to compute only the
 | |
| *     eigenvalues, which requires (3N + 3N**2) real workspace and
 | |
| *     (2 + 5N + 2N lg(N)) integer workspace.
 | |
| *     Since on many architectures DSTERF is much faster than any other
 | |
| *     algorithm for finding eigenvalues only, it is used here
 | |
| *     as the default. If the conditional clause is removed, then
 | |
| *     information on the size of workspace needs to be changed.
 | |
| *
 | |
| *     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
 | |
| *
 | |
|       IF( ICOMPZ.EQ.0 ) THEN
 | |
|          CALL DSTERF( N, D, E, INFO )
 | |
|          GO TO 50
 | |
|       END IF
 | |
| *
 | |
| *     If N is smaller than the minimum divide size (SMLSIZ+1), then
 | |
| *     solve the problem with another solver.
 | |
| *
 | |
|       IF( N.LE.SMLSIZ ) THEN
 | |
| *
 | |
|          CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        If COMPZ = 'V', the Z matrix must be stored elsewhere for later
 | |
| *        use.
 | |
| *
 | |
|          IF( ICOMPZ.EQ.1 ) THEN
 | |
|             STOREZ = 1 + N*N
 | |
|          ELSE
 | |
|             STOREZ = 1
 | |
|          END IF
 | |
| *
 | |
|          IF( ICOMPZ.EQ.2 ) THEN
 | |
|             CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
 | |
|          END IF
 | |
| *
 | |
| *        Scale.
 | |
| *
 | |
|          ORGNRM = DLANST( 'M', N, D, E )
 | |
|          IF( ORGNRM.EQ.ZERO )
 | |
|      $      GO TO 50
 | |
| *
 | |
|          EPS = DLAMCH( 'Epsilon' )
 | |
| *
 | |
|          START = 1
 | |
| *
 | |
| *        while ( START <= N )
 | |
| *
 | |
|    10    CONTINUE
 | |
|          IF( START.LE.N ) THEN
 | |
| *
 | |
| *           Let FINISH be the position of the next subdiagonal entry
 | |
| *           such that E( FINISH ) <= TINY or FINISH = N if no such
 | |
| *           subdiagonal exists.  The matrix identified by the elements
 | |
| *           between START and FINISH constitutes an independent
 | |
| *           sub-problem.
 | |
| *
 | |
|             FINISH = START
 | |
|    20       CONTINUE
 | |
|             IF( FINISH.LT.N ) THEN
 | |
|                TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
 | |
|      $                    SQRT( ABS( D( FINISH+1 ) ) )
 | |
|                IF( ABS( E( FINISH ) ).GT.TINY ) THEN
 | |
|                   FINISH = FINISH + 1
 | |
|                   GO TO 20
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           (Sub) Problem determined.  Compute its size and solve it.
 | |
| *
 | |
|             M = FINISH - START + 1
 | |
|             IF( M.EQ.1 ) THEN
 | |
|                START = FINISH + 1
 | |
|                GO TO 10
 | |
|             END IF
 | |
|             IF( M.GT.SMLSIZ ) THEN
 | |
| *
 | |
| *              Scale.
 | |
| *
 | |
|                ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
 | |
|                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
 | |
|      $                      INFO )
 | |
|                CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
 | |
|      $                      M-1, INFO )
 | |
| *
 | |
|                IF( ICOMPZ.EQ.1 ) THEN
 | |
|                   STRTRW = 1
 | |
|                ELSE
 | |
|                   STRTRW = START
 | |
|                END IF
 | |
|                CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
 | |
|      $                      Z( STRTRW, START ), LDZ, WORK( 1 ), N,
 | |
|      $                      WORK( STOREZ ), IWORK, INFO )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
 | |
|      $                   MOD( INFO, ( M+1 ) ) + START - 1
 | |
|                   GO TO 50
 | |
|                END IF
 | |
| *
 | |
| *              Scale back.
 | |
| *
 | |
|                CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
 | |
|      $                      INFO )
 | |
| *
 | |
|             ELSE
 | |
|                IF( ICOMPZ.EQ.1 ) THEN
 | |
| *
 | |
| *                 Since QR won't update a Z matrix which is larger than
 | |
| *                 the length of D, we must solve the sub-problem in a
 | |
| *                 workspace and then multiply back into Z.
 | |
| *
 | |
|                   CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
 | |
|      $                         WORK( M*M+1 ), INFO )
 | |
|                   CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
 | |
|      $                         WORK( STOREZ ), N )
 | |
|                   CALL DGEMM( 'N', 'N', N, M, M, ONE,
 | |
|      $                        WORK( STOREZ ), N, WORK, M, ZERO,
 | |
|      $                        Z( 1, START ), LDZ )
 | |
|                ELSE IF( ICOMPZ.EQ.2 ) THEN
 | |
|                   CALL DSTEQR( 'I', M, D( START ), E( START ),
 | |
|      $                         Z( START, START ), LDZ, WORK, INFO )
 | |
|                ELSE
 | |
|                   CALL DSTERF( M, D( START ), E( START ), INFO )
 | |
|                END IF
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   INFO = START*( N+1 ) + FINISH
 | |
|                   GO TO 50
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             START = FINISH + 1
 | |
|             GO TO 10
 | |
|          END IF
 | |
| *
 | |
| *        endwhile
 | |
| *
 | |
|          IF( ICOMPZ.EQ.0 ) THEN
 | |
| *
 | |
| *          Use Quick Sort
 | |
| *
 | |
|            CALL DLASRT( 'I', N, D, INFO )
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *          Use Selection Sort to minimize swaps of eigenvectors
 | |
| *
 | |
|            DO 40 II = 2, N
 | |
|               I = II - 1
 | |
|               K = I
 | |
|               P = D( I )
 | |
|               DO 30 J = II, N
 | |
|                  IF( D( J ).LT.P ) THEN
 | |
|                     K = J
 | |
|                     P = D( J )
 | |
|                  END IF
 | |
|    30         CONTINUE
 | |
|               IF( K.NE.I ) THEN
 | |
|                  D( K ) = D( I )
 | |
|                  D( I ) = P
 | |
|                  CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
 | |
|               END IF
 | |
|    40      CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|    50 CONTINUE
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSTEDC
 | |
| *
 | |
|       END
 |