1185 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1185 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static real c_b27 = 1.f;
 | |
| static real c_b38 = 0.f;
 | |
| 
 | |
| /* > \brief <b> SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
 | |
| rices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SGEGV + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgegv.f
 | |
| "> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgegv.f
 | |
| "> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgegv.f
 | |
| "> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, */
 | |
| /*                         BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBVL, JOBVR */
 | |
| /*       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
 | |
| /*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
 | |
| /*      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ), */
 | |
| /*      $                   VR( LDVR, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > This routine is deprecated and has been replaced by routine SGGEV. */
 | |
| /* > */
 | |
| /* > SGEGV computes the eigenvalues and, optionally, the left and/or right */
 | |
| /* > eigenvectors of a real matrix pair (A,B). */
 | |
| /* > Given two square matrices A and B, */
 | |
| /* > the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
 | |
| /* > eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
 | |
| /* > that */
 | |
| /* > */
 | |
| /* >    A*x = lambda*B*x. */
 | |
| /* > */
 | |
| /* > An alternate form is to find the eigenvalues mu and corresponding */
 | |
| /* > eigenvectors y such that */
 | |
| /* > */
 | |
| /* >    mu*A*y = B*y. */
 | |
| /* > */
 | |
| /* > These two forms are equivalent with mu = 1/lambda and x = y if */
 | |
| /* > neither lambda nor mu is zero.  In order to deal with the case that */
 | |
| /* > lambda or mu is zero or small, two values alpha and beta are returned */
 | |
| /* > for each eigenvalue, such that lambda = alpha/beta and */
 | |
| /* > mu = beta/alpha. */
 | |
| /* > */
 | |
| /* > The vectors x and y in the above equations are right eigenvectors of */
 | |
| /* > the matrix pair (A,B).  Vectors u and v satisfying */
 | |
| /* > */
 | |
| /* >    u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B */
 | |
| /* > */
 | |
| /* > are left eigenvectors of (A,B). */
 | |
| /* > */
 | |
| /* > Note: this routine performs "full balancing" on A and B */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBVL */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVL is CHARACTER*1 */
 | |
| /* >          = 'N':  do not compute the left generalized eigenvectors; */
 | |
| /* >          = 'V':  compute the left generalized eigenvectors (returned */
 | |
| /* >                  in VL). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVR */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVR is CHARACTER*1 */
 | |
| /* >          = 'N':  do not compute the right generalized eigenvectors; */
 | |
| /* >          = 'V':  compute the right generalized eigenvectors (returned */
 | |
| /* >                  in VR). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A, B, VL, and VR.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA, N) */
 | |
| /* >          On entry, the matrix A. */
 | |
| /* >          If JOBVL = 'V' or JOBVR = 'V', then on exit A */
 | |
| /* >          contains the real Schur form of A from the generalized Schur */
 | |
| /* >          factorization of the pair (A,B) after balancing. */
 | |
| /* >          If no eigenvectors were computed, then only the diagonal */
 | |
| /* >          blocks from the Schur form will be correct.  See SGGHRD and */
 | |
| /* >          SHGEQZ for details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB, N) */
 | |
| /* >          On entry, the matrix B. */
 | |
| /* >          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
 | |
| /* >          upper triangular matrix obtained from B in the generalized */
 | |
| /* >          Schur factorization of the pair (A,B) after balancing. */
 | |
| /* >          If no eigenvectors were computed, then only those elements of */
 | |
| /* >          B corresponding to the diagonal blocks from the Schur form of */
 | |
| /* >          A will be correct.  See SGGHRD and SHGEQZ for details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAR */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAR is REAL array, dimension (N) */
 | |
| /* >          The real parts of each scalar alpha defining an eigenvalue of */
 | |
| /* >          GNEP. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAI */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAI is REAL array, dimension (N) */
 | |
| /* >          The imaginary parts of each scalar alpha defining an */
 | |
| /* >          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th */
 | |
| /* >          eigenvalue is real; if positive, then the j-th and */
 | |
| /* >          (j+1)-st eigenvalues are a complex conjugate pair, with */
 | |
| /* >          ALPHAI(j+1) = -ALPHAI(j). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is REAL array, dimension (N) */
 | |
| /* >          The scalars beta that define the eigenvalues of GNEP. */
 | |
| /* > */
 | |
| /* >          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
 | |
| /* >          beta = BETA(j) represent the j-th eigenvalue of the matrix */
 | |
| /* >          pair (A,B), in one of the forms lambda = alpha/beta or */
 | |
| /* >          mu = beta/alpha.  Since either lambda or mu may overflow, */
 | |
| /* >          they should not, in general, be computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is REAL array, dimension (LDVL,N) */
 | |
| /* >          If JOBVL = 'V', the left eigenvectors u(j) are stored */
 | |
| /* >          in the columns of VL, in the same order as their eigenvalues. */
 | |
| /* >          If the j-th eigenvalue is real, then u(j) = VL(:,j). */
 | |
| /* >          If the j-th and (j+1)-st eigenvalues form a complex conjugate */
 | |
| /* >          pair, then */
 | |
| /* >             u(j) = VL(:,j) + i*VL(:,j+1) */
 | |
| /* >          and */
 | |
| /* >            u(j+1) = VL(:,j) - i*VL(:,j+1). */
 | |
| /* > */
 | |
| /* >          Each eigenvector is scaled so that its largest component has */
 | |
| /* >          abs(real part) + abs(imag. part) = 1, except for eigenvectors */
 | |
| /* >          corresponding to an eigenvalue with alpha = beta = 0, which */
 | |
| /* >          are set to zero. */
 | |
| /* >          Not referenced if JOBVL = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVL is INTEGER */
 | |
| /* >          The leading dimension of the matrix VL. LDVL >= 1, and */
 | |
| /* >          if JOBVL = 'V', LDVL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is REAL array, dimension (LDVR,N) */
 | |
| /* >          If JOBVR = 'V', the right eigenvectors x(j) are stored */
 | |
| /* >          in the columns of VR, in the same order as their eigenvalues. */
 | |
| /* >          If the j-th eigenvalue is real, then x(j) = VR(:,j). */
 | |
| /* >          If the j-th and (j+1)-st eigenvalues form a complex conjugate */
 | |
| /* >          pair, then */
 | |
| /* >            x(j) = VR(:,j) + i*VR(:,j+1) */
 | |
| /* >          and */
 | |
| /* >            x(j+1) = VR(:,j) - i*VR(:,j+1). */
 | |
| /* > */
 | |
| /* >          Each eigenvector is scaled so that its largest component has */
 | |
| /* >          abs(real part) + abs(imag. part) = 1, except for eigenvalues */
 | |
| /* >          corresponding to an eigenvalue with alpha = beta = 0, which */
 | |
| /* >          are set to zero. */
 | |
| /* >          Not referenced if JOBVR = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVR is INTEGER */
 | |
| /* >          The leading dimension of the matrix VR. LDVR >= 1, and */
 | |
| /* >          if JOBVR = 'V', LDVR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK.  LWORK >= f2cmax(1,8*N). */
 | |
| /* >          For good performance, LWORK must generally be larger. */
 | |
| /* >          To compute the optimal value of LWORK, call ILAENV to get */
 | |
| /* >          blocksizes (for SGEQRF, SORMQR, and SORGQR.)  Then compute: */
 | |
| /* >          NB  -- MAX of the blocksizes for SGEQRF, SORMQR, and SORGQR; */
 | |
| /* >          The optimal LWORK is: */
 | |
| /* >              2*N + MAX( 6*N, N*(NB+1) ). */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          = 1,...,N: */
 | |
| /* >                The QZ iteration failed.  No eigenvectors have been */
 | |
| /* >                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
 | |
| /* >                should be correct for j=INFO+1,...,N. */
 | |
| /* >          > N:  errors that usually indicate LAPACK problems: */
 | |
| /* >                =N+1: error return from SGGBAL */
 | |
| /* >                =N+2: error return from SGEQRF */
 | |
| /* >                =N+3: error return from SORMQR */
 | |
| /* >                =N+4: error return from SORGQR */
 | |
| /* >                =N+5: error return from SGGHRD */
 | |
| /* >                =N+6: error return from SHGEQZ (other than failed */
 | |
| /* >                                                iteration) */
 | |
| /* >                =N+7: error return from STGEVC */
 | |
| /* >                =N+8: error return from SGGBAK (computing VL) */
 | |
| /* >                =N+9: error return from SGGBAK (computing VR) */
 | |
| /* >                =N+10: error return from SLASCL (various calls) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realGEeigen */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  Balancing */
 | |
| /* >  --------- */
 | |
| /* > */
 | |
| /* >  This driver calls SGGBAL to both permute and scale rows and columns */
 | |
| /* >  of A and B.  The permutations PL and PR are chosen so that PL*A*PR */
 | |
| /* >  and PL*B*R will be upper triangular except for the diagonal blocks */
 | |
| /* >  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
 | |
| /* >  possible.  The diagonal scaling matrices DL and DR are chosen so */
 | |
| /* >  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
 | |
| /* >  one (except for the elements that start out zero.) */
 | |
| /* > */
 | |
| /* >  After the eigenvalues and eigenvectors of the balanced matrices */
 | |
| /* >  have been computed, SGGBAK transforms the eigenvectors back to what */
 | |
| /* >  they would have been (in perfect arithmetic) if they had not been */
 | |
| /* >  balanced. */
 | |
| /* > */
 | |
| /* >  Contents of A and B on Exit */
 | |
| /* >  -------- -- - --- - -- ---- */
 | |
| /* > */
 | |
| /* >  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
 | |
| /* >  both), then on exit the arrays A and B will contain the real Schur */
 | |
| /* >  form[*] of the "balanced" versions of A and B.  If no eigenvectors */
 | |
| /* >  are computed, then only the diagonal blocks will be correct. */
 | |
| /* > */
 | |
| /* >  [*] See SHGEQZ, SGEGS, or read the book "Matrix Computations", */
 | |
| /* >      by Golub & van Loan, pub. by Johns Hopkins U. Press. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sgegv_(char *jobvl, char *jobvr, integer *n, real *a, 
 | |
| 	integer *lda, real *b, integer *ldb, real *alphar, real *alphai, real 
 | |
| 	*beta, real *vl, integer *ldvl, real *vr, integer *ldvr, real *work, 
 | |
| 	integer *lwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
 | |
| 	    vr_offset, i__1, i__2;
 | |
|     real r__1, r__2, r__3, r__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real absb, anrm, bnrm;
 | |
|     integer itau;
 | |
|     real temp;
 | |
|     logical ilvl, ilvr;
 | |
|     integer lopt;
 | |
|     real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer ileft, iinfo, icols, iwork, irows, jc, nb, in, jr;
 | |
|     real salfai;
 | |
|     extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, integer *
 | |
| 	    ), sggbal_(char *, integer *, real *, integer *, 
 | |
| 	    real *, integer *, integer *, integer *, real *, real *, real *, 
 | |
| 	    integer *);
 | |
|     real salfar;
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     real safmin;
 | |
|     extern /* Subroutine */ void sgghrd_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, integer *, real *, integer *
 | |
| 	    , real *, integer *, integer *);
 | |
|     real safmax;
 | |
|     char chtemp[1];
 | |
|     logical ldumma[1];
 | |
|     extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *); 
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     integer ijobvl, iright;
 | |
|     logical ilimit;
 | |
|     extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, integer *, integer *);
 | |
|     integer ijobvr;
 | |
|     extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, integer *), slaset_(char *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *), stgevc_(
 | |
| 	    char *, char *, logical *, integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, integer *, real *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *);
 | |
|     real onepls;
 | |
|     integer lwkmin, nb1, nb2, nb3;
 | |
|     extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, integer *, real *
 | |
| 	    , real *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    integer *, integer *), sorgqr_(integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, real *, integer *
 | |
| 	    , integer *);
 | |
|     integer lwkopt;
 | |
|     logical lquery;
 | |
|     extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     integer ihi, ilo;
 | |
|     real eps;
 | |
|     logical ilv;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --alphar;
 | |
|     --alphai;
 | |
|     --beta;
 | |
|     vl_dim1 = *ldvl;
 | |
|     vl_offset = 1 + vl_dim1 * 1;
 | |
|     vl -= vl_offset;
 | |
|     vr_dim1 = *ldvr;
 | |
|     vr_offset = 1 + vr_dim1 * 1;
 | |
|     vr -= vr_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (lsame_(jobvl, "N")) {
 | |
| 	ijobvl = 1;
 | |
| 	ilvl = FALSE_;
 | |
|     } else if (lsame_(jobvl, "V")) {
 | |
| 	ijobvl = 2;
 | |
| 	ilvl = TRUE_;
 | |
|     } else {
 | |
| 	ijobvl = -1;
 | |
| 	ilvl = FALSE_;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(jobvr, "N")) {
 | |
| 	ijobvr = 1;
 | |
| 	ilvr = FALSE_;
 | |
|     } else if (lsame_(jobvr, "V")) {
 | |
| 	ijobvr = 2;
 | |
| 	ilvr = TRUE_;
 | |
|     } else {
 | |
| 	ijobvr = -1;
 | |
| 	ilvr = FALSE_;
 | |
|     }
 | |
|     ilv = ilvl || ilvr;
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__1 = *n << 3;
 | |
|     lwkmin = f2cmax(i__1,1);
 | |
|     lwkopt = lwkmin;
 | |
|     work[1] = (real) lwkopt;
 | |
|     lquery = *lwork == -1;
 | |
|     *info = 0;
 | |
|     if (ijobvl <= 0) {
 | |
| 	*info = -1;
 | |
|     } else if (ijobvr <= 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
 | |
| 	*info = -12;
 | |
|     } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
 | |
| 	*info = -14;
 | |
|     } else if (*lwork < lwkmin && ! lquery) {
 | |
| 	*info = -16;
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	nb1 = ilaenv_(&c__1, "SGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
 | |
| 		ftnlen)1);
 | |
| 	nb2 = ilaenv_(&c__1, "SORMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
 | |
| 		ftnlen)1);
 | |
| 	nb3 = ilaenv_(&c__1, "SORGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
 | |
| 		ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 	i__1 = f2cmax(nb1,nb2);
 | |
| 	nb = f2cmax(i__1,nb3);
 | |
| /* Computing MAX */
 | |
| 	i__1 = *n * 6, i__2 = *n * (nb + 1);
 | |
| 	lopt = (*n << 1) + f2cmax(i__1,i__2);
 | |
| 	work[1] = (real) lopt;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGEGV ", &i__1, 6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = slamch_("E") * slamch_("B");
 | |
|     safmin = slamch_("S");
 | |
|     safmin += safmin;
 | |
|     safmax = 1.f / safmin;
 | |
|     onepls = eps * 4 + 1.f;
 | |
| 
 | |
| /*     Scale A */
 | |
| 
 | |
|     anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
 | |
|     anrm1 = anrm;
 | |
|     anrm2 = 1.f;
 | |
|     if (anrm < 1.f) {
 | |
| 	if (safmax * anrm < 1.f) {
 | |
| 	    anrm1 = safmin;
 | |
| 	    anrm2 = safmax * anrm;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (anrm > 0.f) {
 | |
| 	slascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 10;
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Scale B */
 | |
| 
 | |
|     bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
 | |
|     bnrm1 = bnrm;
 | |
|     bnrm2 = 1.f;
 | |
|     if (bnrm < 1.f) {
 | |
| 	if (safmax * bnrm < 1.f) {
 | |
| 	    bnrm1 = safmin;
 | |
| 	    bnrm2 = safmax * bnrm;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (bnrm > 0.f) {
 | |
| 	slascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 10;
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Permute the matrix to make it more nearly triangular */
 | |
| /*     Workspace layout:  (8*N words -- "work" requires 6*N words) */
 | |
| /*        left_permutation, right_permutation, work... */
 | |
| 
 | |
|     ileft = 1;
 | |
|     iright = *n + 1;
 | |
|     iwork = iright + *n;
 | |
|     sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
 | |
| 	    ileft], &work[iright], &work[iwork], &iinfo);
 | |
|     if (iinfo != 0) {
 | |
| 	*info = *n + 1;
 | |
| 	goto L120;
 | |
|     }
 | |
| 
 | |
| /*     Reduce B to triangular form, and initialize VL and/or VR */
 | |
| /*     Workspace layout:  ("work..." must have at least N words) */
 | |
| /*        left_permutation, right_permutation, tau, work... */
 | |
| 
 | |
|     irows = ihi + 1 - ilo;
 | |
|     if (ilv) {
 | |
| 	icols = *n + 1 - ilo;
 | |
|     } else {
 | |
| 	icols = irows;
 | |
|     }
 | |
|     itau = iwork;
 | |
|     iwork = itau + irows;
 | |
|     i__1 = *lwork + 1 - iwork;
 | |
|     sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 | |
| 	    iwork], &i__1, &iinfo);
 | |
|     if (iinfo >= 0) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
|     }
 | |
|     if (iinfo != 0) {
 | |
| 	*info = *n + 2;
 | |
| 	goto L120;
 | |
|     }
 | |
| 
 | |
|     i__1 = *lwork + 1 - iwork;
 | |
|     sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 | |
| 	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
 | |
| 	    iinfo);
 | |
|     if (iinfo >= 0) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
|     }
 | |
|     if (iinfo != 0) {
 | |
| 	*info = *n + 3;
 | |
| 	goto L120;
 | |
|     }
 | |
| 
 | |
|     if (ilvl) {
 | |
| 	slaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)
 | |
| 		;
 | |
| 	i__1 = irows - 1;
 | |
| 	i__2 = irows - 1;
 | |
| 	slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + 
 | |
| 		1 + ilo * vl_dim1], ldvl);
 | |
| 	i__1 = *lwork + 1 - iwork;
 | |
| 	sorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
 | |
| 		itau], &work[iwork], &i__1, &iinfo);
 | |
| 	if (iinfo >= 0) {
 | |
| /* Computing MAX */
 | |
| 	    i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | |
| 	    lwkopt = f2cmax(i__1,i__2);
 | |
| 	}
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 4;
 | |
| 	    goto L120;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (ilvr) {
 | |
| 	slaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)
 | |
| 		;
 | |
|     }
 | |
| 
 | |
| /*     Reduce to generalized Hessenberg form */
 | |
| 
 | |
|     if (ilv) {
 | |
| 
 | |
| /*        Eigenvectors requested -- work on whole matrix. */
 | |
| 
 | |
| 	sgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 | |
| 		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
 | |
|     } else {
 | |
| 	sgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, 
 | |
| 		&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
 | |
| 		vr_offset], ldvr, &iinfo);
 | |
|     }
 | |
|     if (iinfo != 0) {
 | |
| 	*info = *n + 5;
 | |
| 	goto L120;
 | |
|     }
 | |
| 
 | |
| /*     Perform QZ algorithm */
 | |
| /*     Workspace layout:  ("work..." must have at least 1 word) */
 | |
| /*        left_permutation, right_permutation, work... */
 | |
| 
 | |
|     iwork = itau;
 | |
|     if (ilv) {
 | |
| 	*(unsigned char *)chtemp = 'S';
 | |
|     } else {
 | |
| 	*(unsigned char *)chtemp = 'E';
 | |
|     }
 | |
|     i__1 = *lwork + 1 - iwork;
 | |
|     shgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 | |
| 	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 
 | |
| 	    ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);
 | |
|     if (iinfo >= 0) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
|     }
 | |
|     if (iinfo != 0) {
 | |
| 	if (iinfo > 0 && iinfo <= *n) {
 | |
| 	    *info = iinfo;
 | |
| 	} else if (iinfo > *n && iinfo <= *n << 1) {
 | |
| 	    *info = iinfo - *n;
 | |
| 	} else {
 | |
| 	    *info = *n + 6;
 | |
| 	}
 | |
| 	goto L120;
 | |
|     }
 | |
| 
 | |
|     if (ilv) {
 | |
| 
 | |
| /*        Compute Eigenvectors  (STGEVC requires 6*N words of workspace) */
 | |
| 
 | |
| 	if (ilvl) {
 | |
| 	    if (ilvr) {
 | |
| 		*(unsigned char *)chtemp = 'B';
 | |
| 	    } else {
 | |
| 		*(unsigned char *)chtemp = 'L';
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    *(unsigned char *)chtemp = 'R';
 | |
| 	}
 | |
| 
 | |
| 	stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
 | |
| 		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
 | |
| 		iwork], &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = *n + 7;
 | |
| 	    goto L120;
 | |
| 	}
 | |
| 
 | |
| /*        Undo balancing on VL and VR, rescale */
 | |
| 
 | |
| 	if (ilvl) {
 | |
| 	    sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
 | |
| 		    vl[vl_offset], ldvl, &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = *n + 8;
 | |
| 		goto L120;
 | |
| 	    }
 | |
| 	    i__1 = *n;
 | |
| 	    for (jc = 1; jc <= i__1; ++jc) {
 | |
| 		if (alphai[jc] < 0.f) {
 | |
| 		    goto L50;
 | |
| 		}
 | |
| 		temp = 0.f;
 | |
| 		if (alphai[jc] == 0.f) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 			r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1], 
 | |
| 				abs(r__1));
 | |
| 			temp = f2cmax(r__2,r__3);
 | |
| /* L10: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 			r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1], 
 | |
| 				abs(r__1)) + (r__2 = vl[jr + (jc + 1) * 
 | |
| 				vl_dim1], abs(r__2));
 | |
| 			temp = f2cmax(r__3,r__4);
 | |
| /* L20: */
 | |
| 		    }
 | |
| 		}
 | |
| 		if (temp < safmin) {
 | |
| 		    goto L50;
 | |
| 		}
 | |
| 		temp = 1.f / temp;
 | |
| 		if (alphai[jc] == 0.f) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			vl[jr + jc * vl_dim1] *= temp;
 | |
| /* L30: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			vl[jr + jc * vl_dim1] *= temp;
 | |
| 			vl[jr + (jc + 1) * vl_dim1] *= temp;
 | |
| /* L40: */
 | |
| 		    }
 | |
| 		}
 | |
| L50:
 | |
| 		;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (ilvr) {
 | |
| 	    sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
 | |
| 		    vr[vr_offset], ldvr, &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = *n + 9;
 | |
| 		goto L120;
 | |
| 	    }
 | |
| 	    i__1 = *n;
 | |
| 	    for (jc = 1; jc <= i__1; ++jc) {
 | |
| 		if (alphai[jc] < 0.f) {
 | |
| 		    goto L100;
 | |
| 		}
 | |
| 		temp = 0.f;
 | |
| 		if (alphai[jc] == 0.f) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 			r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1], 
 | |
| 				abs(r__1));
 | |
| 			temp = f2cmax(r__2,r__3);
 | |
| /* L60: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 			r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1], 
 | |
| 				abs(r__1)) + (r__2 = vr[jr + (jc + 1) * 
 | |
| 				vr_dim1], abs(r__2));
 | |
| 			temp = f2cmax(r__3,r__4);
 | |
| /* L70: */
 | |
| 		    }
 | |
| 		}
 | |
| 		if (temp < safmin) {
 | |
| 		    goto L100;
 | |
| 		}
 | |
| 		temp = 1.f / temp;
 | |
| 		if (alphai[jc] == 0.f) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			vr[jr + jc * vr_dim1] *= temp;
 | |
| /* L80: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			vr[jr + jc * vr_dim1] *= temp;
 | |
| 			vr[jr + (jc + 1) * vr_dim1] *= temp;
 | |
| /* L90: */
 | |
| 		    }
 | |
| 		}
 | |
| L100:
 | |
| 		;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        End of eigenvector calculation */
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling in alpha, beta */
 | |
| 
 | |
| /*     Note: this does not give the alpha and beta for the unscaled */
 | |
| /*     problem. */
 | |
| 
 | |
| /*     Un-scaling is limited to avoid underflow in alpha and beta */
 | |
| /*     if they are significant. */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (jc = 1; jc <= i__1; ++jc) {
 | |
| 	absar = (r__1 = alphar[jc], abs(r__1));
 | |
| 	absai = (r__1 = alphai[jc], abs(r__1));
 | |
| 	absb = (r__1 = beta[jc], abs(r__1));
 | |
| 	salfar = anrm * alphar[jc];
 | |
| 	salfai = anrm * alphai[jc];
 | |
| 	sbeta = bnrm * beta[jc];
 | |
| 	ilimit = FALSE_;
 | |
| 	scale = 1.f;
 | |
| 
 | |
| /*        Check for significant underflow in ALPHAI */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	r__1 = safmin, r__2 = eps * absar, r__1 = f2cmax(r__1,r__2), r__2 = eps *
 | |
| 		 absb;
 | |
| 	if (abs(salfai) < safmin && absai >= f2cmax(r__1,r__2)) {
 | |
| 	    ilimit = TRUE_;
 | |
| /* Computing MAX */
 | |
| 	    r__1 = onepls * safmin, r__2 = anrm2 * absai;
 | |
| 	    scale = onepls * safmin / anrm1 / f2cmax(r__1,r__2);
 | |
| 
 | |
| 	} else if (salfai == 0.f) {
 | |
| 
 | |
| /*           If insignificant underflow in ALPHAI, then make the */
 | |
| /*           conjugate eigenvalue real. */
 | |
| 
 | |
| 	    if (alphai[jc] < 0.f && jc > 1) {
 | |
| 		alphai[jc - 1] = 0.f;
 | |
| 	    } else if (alphai[jc] > 0.f && jc < *n) {
 | |
| 		alphai[jc + 1] = 0.f;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Check for significant underflow in ALPHAR */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	r__1 = safmin, r__2 = eps * absai, r__1 = f2cmax(r__1,r__2), r__2 = eps *
 | |
| 		 absb;
 | |
| 	if (abs(salfar) < safmin && absar >= f2cmax(r__1,r__2)) {
 | |
| 	    ilimit = TRUE_;
 | |
| /* Computing MAX */
 | |
| /* Computing MAX */
 | |
| 	    r__3 = onepls * safmin, r__4 = anrm2 * absar;
 | |
| 	    r__1 = scale, r__2 = onepls * safmin / anrm1 / f2cmax(r__3,r__4);
 | |
| 	    scale = f2cmax(r__1,r__2);
 | |
| 	}
 | |
| 
 | |
| /*        Check for significant underflow in BETA */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	r__1 = safmin, r__2 = eps * absar, r__1 = f2cmax(r__1,r__2), r__2 = eps *
 | |
| 		 absai;
 | |
| 	if (abs(sbeta) < safmin && absb >= f2cmax(r__1,r__2)) {
 | |
| 	    ilimit = TRUE_;
 | |
| /* Computing MAX */
 | |
| /* Computing MAX */
 | |
| 	    r__3 = onepls * safmin, r__4 = bnrm2 * absb;
 | |
| 	    r__1 = scale, r__2 = onepls * safmin / bnrm1 / f2cmax(r__3,r__4);
 | |
| 	    scale = f2cmax(r__1,r__2);
 | |
| 	}
 | |
| 
 | |
| /*        Check for possible overflow when limiting scaling */
 | |
| 
 | |
| 	if (ilimit) {
 | |
| /* Computing MAX */
 | |
| 	    r__1 = abs(salfar), r__2 = abs(salfai), r__1 = f2cmax(r__1,r__2), 
 | |
| 		    r__2 = abs(sbeta);
 | |
| 	    temp = scale * safmin * f2cmax(r__1,r__2);
 | |
| 	    if (temp > 1.f) {
 | |
| 		scale /= temp;
 | |
| 	    }
 | |
| 	    if (scale < 1.f) {
 | |
| 		ilimit = FALSE_;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */
 | |
| 
 | |
| 	if (ilimit) {
 | |
| 	    salfar = scale * alphar[jc] * anrm;
 | |
| 	    salfai = scale * alphai[jc] * anrm;
 | |
| 	    sbeta = scale * beta[jc] * bnrm;
 | |
| 	}
 | |
| 	alphar[jc] = salfar;
 | |
| 	alphai[jc] = salfai;
 | |
| 	beta[jc] = sbeta;
 | |
| /* L110: */
 | |
|     }
 | |
| 
 | |
| L120:
 | |
|     work[1] = (real) lwkopt;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SGEGV */
 | |
| 
 | |
| } /* sgegv_ */
 | |
| 
 |