217 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DTPT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DTPT01( UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          DIAG, UPLO
 | 
						|
*       INTEGER            N
 | 
						|
*       DOUBLE PRECISION   RCOND, RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   AINVP( * ), AP( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DTPT01 computes the residual for a triangular matrix A times its
 | 
						|
*> inverse when A is stored in packed format:
 | 
						|
*>    RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the matrix A is upper or lower triangular.
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DIAG
 | 
						|
*> \verbatim
 | 
						|
*>          DIAG is CHARACTER*1
 | 
						|
*>          Specifies whether or not the matrix A is unit triangular.
 | 
						|
*>          = 'N':  Non-unit triangular
 | 
						|
*>          = 'U':  Unit triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AP
 | 
						|
*> \verbatim
 | 
						|
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          The original upper or lower triangular matrix A, packed
 | 
						|
*>          columnwise in a linear array.  The j-th column of A is stored
 | 
						|
*>          in the array AP as follows:
 | 
						|
*>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
 | 
						|
*>          if UPLO = 'L',
 | 
						|
*>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AINVP
 | 
						|
*> \verbatim
 | 
						|
*>          AINVP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
 | 
						|
*>          On entry, the (triangular) inverse of the matrix A, packed
 | 
						|
*>          columnwise in a linear array as in AP.
 | 
						|
*>          On exit, the contents of AINVP are destroyed.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          The reciprocal condition number of A, computed as
 | 
						|
*>          1/(norm(A) * norm(AINV)).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup double_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DTPT01( UPLO, DIAG, N, AP, AINVP, RCOND, WORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          DIAG, UPLO
 | 
						|
      INTEGER            N
 | 
						|
      DOUBLE PRECISION   RCOND, RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   AINVP( * ), AP( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UNITD
 | 
						|
      INTEGER            J, JC
 | 
						|
      DOUBLE PRECISION   AINVNM, ANORM, EPS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLANTP
 | 
						|
      EXTERNAL           LSAME, DLAMCH, DLANTP
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DTPMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          DBLE
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      ANORM = DLANTP( '1', UPLO, DIAG, N, AP, WORK )
 | 
						|
      AINVNM = DLANTP( '1', UPLO, DIAG, N, AINVP, WORK )
 | 
						|
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | 
						|
         RCOND = ZERO
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
      RCOND = ( ONE / ANORM ) / AINVNM
 | 
						|
*
 | 
						|
*     Compute A * AINV, overwriting AINV.
 | 
						|
*
 | 
						|
      UNITD = LSAME( DIAG, 'U' )
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         JC = 1
 | 
						|
         DO 10 J = 1, N
 | 
						|
            IF( UNITD )
 | 
						|
     $         AINVP( JC+J-1 ) = ONE
 | 
						|
*
 | 
						|
*           Form the j-th column of A*AINV
 | 
						|
*
 | 
						|
            CALL DTPMV( 'Upper', 'No transpose', DIAG, J, AP,
 | 
						|
     $                  AINVP( JC ), 1 )
 | 
						|
*
 | 
						|
*           Subtract 1 from the diagonal
 | 
						|
*
 | 
						|
            AINVP( JC+J-1 ) = AINVP( JC+J-1 ) - ONE
 | 
						|
            JC = JC + J
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
         JC = 1
 | 
						|
         DO 20 J = 1, N
 | 
						|
            IF( UNITD )
 | 
						|
     $         AINVP( JC ) = ONE
 | 
						|
*
 | 
						|
*           Form the j-th column of A*AINV
 | 
						|
*
 | 
						|
            CALL DTPMV( 'Lower', 'No transpose', DIAG, N-J+1, AP( JC ),
 | 
						|
     $                  AINVP( JC ), 1 )
 | 
						|
*
 | 
						|
*           Subtract 1 from the diagonal
 | 
						|
*
 | 
						|
            AINVP( JC ) = AINVP( JC ) - ONE
 | 
						|
            JC = JC + N - J + 1
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
 | 
						|
*
 | 
						|
      RESID = DLANTP( '1', UPLO, 'Non-unit', N, AINVP, WORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID*RCOND ) / DBLE( N ) ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DTPT01
 | 
						|
*
 | 
						|
      END
 |