714 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			714 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SCHKBB
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
 | 
						|
*                          NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
 | 
						|
*                          BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
 | 
						|
*                          LWORK, RESULT, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
 | 
						|
*      $                   NRHS, NSIZES, NTYPES, NWDTHS
 | 
						|
*       REAL               THRESH
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            DOTYPE( * )
 | 
						|
*       INTEGER            ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
 | 
						|
*       REAL               A( LDA, * ), AB( LDAB, * ), BD( * ), BE( * ),
 | 
						|
*      $                   C( LDC, * ), CC( LDC, * ), P( LDP, * ),
 | 
						|
*      $                   Q( LDQ, * ), RESULT( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SCHKBB tests the reduction of a general real rectangular band
 | 
						|
*> matrix to bidiagonal form.
 | 
						|
*>
 | 
						|
*> SGBBRD factors a general band matrix A as  Q B P* , where * means
 | 
						|
*> transpose, B is upper bidiagonal, and Q and P are orthogonal;
 | 
						|
*> SGBBRD can also overwrite a given matrix C with Q* C .
 | 
						|
*>
 | 
						|
*> For each pair of matrix dimensions (M,N) and each selected matrix
 | 
						|
*> type, an M by N matrix A and an M by NRHS matrix C are generated.
 | 
						|
*> The problem dimensions are as follows
 | 
						|
*>    A:          M x N
 | 
						|
*>    Q:          M x M
 | 
						|
*>    P:          N x N
 | 
						|
*>    B:          min(M,N) x min(M,N)
 | 
						|
*>    C:          M x NRHS
 | 
						|
*>
 | 
						|
*> For each generated matrix, 4 tests are performed:
 | 
						|
*>
 | 
						|
*> (1)   | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
 | 
						|
*>
 | 
						|
*> (2)   | I - Q' Q | / ( M ulp )
 | 
						|
*>
 | 
						|
*> (3)   | I - PT PT' | / ( N ulp )
 | 
						|
*>
 | 
						|
*> (4)   | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C.
 | 
						|
*>
 | 
						|
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 | 
						|
*> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 | 
						|
*> Currently, the list of possible types is:
 | 
						|
*>
 | 
						|
*> The possible matrix types are
 | 
						|
*>
 | 
						|
*> (1)  The zero matrix.
 | 
						|
*> (2)  The identity matrix.
 | 
						|
*>
 | 
						|
*> (3)  A diagonal matrix with evenly spaced entries
 | 
						|
*>      1, ..., ULP  and random signs.
 | 
						|
*>      (ULP = (first number larger than 1) - 1 )
 | 
						|
*> (4)  A diagonal matrix with geometrically spaced entries
 | 
						|
*>      1, ..., ULP  and random signs.
 | 
						|
*> (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
 | 
						|
*>      and random signs.
 | 
						|
*>
 | 
						|
*> (6)  Same as (3), but multiplied by SQRT( overflow threshold )
 | 
						|
*> (7)  Same as (3), but multiplied by SQRT( underflow threshold )
 | 
						|
*>
 | 
						|
*> (8)  A matrix of the form  U D V, where U and V are orthogonal and
 | 
						|
*>      D has evenly spaced entries 1, ..., ULP with random signs
 | 
						|
*>      on the diagonal.
 | 
						|
*>
 | 
						|
*> (9)  A matrix of the form  U D V, where U and V are orthogonal and
 | 
						|
*>      D has geometrically spaced entries 1, ..., ULP with random
 | 
						|
*>      signs on the diagonal.
 | 
						|
*>
 | 
						|
*> (10) A matrix of the form  U D V, where U and V are orthogonal and
 | 
						|
*>      D has "clustered" entries 1, ULP,..., ULP with random
 | 
						|
*>      signs on the diagonal.
 | 
						|
*>
 | 
						|
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
 | 
						|
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
 | 
						|
*>
 | 
						|
*> (13) Rectangular matrix with random entries chosen from (-1,1).
 | 
						|
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
 | 
						|
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NSIZES
 | 
						|
*> \verbatim
 | 
						|
*>          NSIZES is INTEGER
 | 
						|
*>          The number of values of M and N contained in the vectors
 | 
						|
*>          MVAL and NVAL.  The matrix sizes are used in pairs (M,N).
 | 
						|
*>          If NSIZES is zero, SCHKBB does nothing.  NSIZES must be at
 | 
						|
*>          least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MVAL
 | 
						|
*> \verbatim
 | 
						|
*>          MVAL is INTEGER array, dimension (NSIZES)
 | 
						|
*>          The values of the matrix row dimension M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NVAL
 | 
						|
*> \verbatim
 | 
						|
*>          NVAL is INTEGER array, dimension (NSIZES)
 | 
						|
*>          The values of the matrix column dimension N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NWDTHS
 | 
						|
*> \verbatim
 | 
						|
*>          NWDTHS is INTEGER
 | 
						|
*>          The number of bandwidths to use.  If it is zero,
 | 
						|
*>          SCHKBB does nothing.  It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KK
 | 
						|
*> \verbatim
 | 
						|
*>          KK is INTEGER array, dimension (NWDTHS)
 | 
						|
*>          An array containing the bandwidths to be used for the band
 | 
						|
*>          matrices.  The values must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NTYPES
 | 
						|
*> \verbatim
 | 
						|
*>          NTYPES is INTEGER
 | 
						|
*>          The number of elements in DOTYPE.   If it is zero, SCHKBB
 | 
						|
*>          does nothing.  It must be at least zero.  If it is MAXTYP+1
 | 
						|
*>          and NSIZES is 1, then an additional type, MAXTYP+1 is
 | 
						|
*>          defined, which is to use whatever matrix is in A.  This
 | 
						|
*>          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
 | 
						|
*>          DOTYPE(MAXTYP+1) is .TRUE. .
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DOTYPE
 | 
						|
*> \verbatim
 | 
						|
*>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | 
						|
*>          If DOTYPE(j) is .TRUE., then for each size in NN a
 | 
						|
*>          matrix of that size and of type j will be generated.
 | 
						|
*>          If NTYPES is smaller than the maximum number of types
 | 
						|
*>          defined (PARAMETER MAXTYP), then types NTYPES+1 through
 | 
						|
*>          MAXTYP will not be generated.  If NTYPES is larger
 | 
						|
*>          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
 | 
						|
*>          will be ignored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of columns in the "right-hand side" matrix C.
 | 
						|
*>          If NRHS = 0, then the operations on the right-hand side will
 | 
						|
*>          not be tested. NRHS must be at least 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] ISEED
 | 
						|
*> \verbatim
 | 
						|
*>          ISEED is INTEGER array, dimension (4)
 | 
						|
*>          On entry ISEED specifies the seed of the random number
 | 
						|
*>          generator. The array elements should be between 0 and 4095;
 | 
						|
*>          if not they will be reduced mod 4096.  Also, ISEED(4) must
 | 
						|
*>          be odd.  The random number generator uses a linear
 | 
						|
*>          congruential sequence limited to small integers, and so
 | 
						|
*>          should produce machine independent random numbers. The
 | 
						|
*>          values of ISEED are changed on exit, and can be used in the
 | 
						|
*>          next call to SCHKBB to continue the same random number
 | 
						|
*>          sequence.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] THRESH
 | 
						|
*> \verbatim
 | 
						|
*>          THRESH is REAL
 | 
						|
*>          A test will count as "failed" if the "error", computed as
 | 
						|
*>          described above, exceeds THRESH.  Note that the error
 | 
						|
*>          is scaled to be O(1), so THRESH should be a reasonably
 | 
						|
*>          small multiple of 1, e.g., 10 or 100.  In particular,
 | 
						|
*>          it should not depend on the precision (single vs. double)
 | 
						|
*>          or the size of the matrix.  It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NOUNIT
 | 
						|
*> \verbatim
 | 
						|
*>          NOUNIT is INTEGER
 | 
						|
*>          The FORTRAN unit number for printing out error messages
 | 
						|
*>          (e.g., if a routine returns IINFO not equal to 0.)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension
 | 
						|
*>                            (LDA, max(NN))
 | 
						|
*>          Used to hold the matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at least 1
 | 
						|
*>          and at least max( NN ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is REAL array, dimension (LDAB, max(NN))
 | 
						|
*>          Used to hold A in band storage format.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of AB.  It must be at least 2 (not 1!)
 | 
						|
*>          and at least max( KK )+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BD
 | 
						|
*> \verbatim
 | 
						|
*>          BD is REAL array, dimension (max(NN))
 | 
						|
*>          Used to hold the diagonal of the bidiagonal matrix computed
 | 
						|
*>          by SGBBRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] BE
 | 
						|
*> \verbatim
 | 
						|
*>          BE is REAL array, dimension (max(NN))
 | 
						|
*>          Used to hold the off-diagonal of the bidiagonal matrix
 | 
						|
*>          computed by SGBBRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is REAL array, dimension (LDQ, max(NN))
 | 
						|
*>          Used to hold the orthogonal matrix Q computed by SGBBRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of Q.  It must be at least 1
 | 
						|
*>          and at least max( NN ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is REAL array, dimension (LDP, max(NN))
 | 
						|
*>          Used to hold the orthogonal matrix P computed by SGBBRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDP
 | 
						|
*> \verbatim
 | 
						|
*>          LDP is INTEGER
 | 
						|
*>          The leading dimension of P.  It must be at least 1
 | 
						|
*>          and at least max( NN ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is REAL array, dimension (LDC, max(NN))
 | 
						|
*>          Used to hold the matrix C updated by SGBBRD.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of U.  It must be at least 1
 | 
						|
*>          and at least max( NN ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] CC
 | 
						|
*> \verbatim
 | 
						|
*>          CC is REAL array, dimension (LDC, max(NN))
 | 
						|
*>          Used to hold a copy of the matrix C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The number of entries in WORK.  This must be at least
 | 
						|
*>          max( LDA+1, max(NN)+1 )*max(NN).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (4)
 | 
						|
*>          The values computed by the tests described above.
 | 
						|
*>          The values are currently limited to 1/ulp, to avoid
 | 
						|
*>          overflow.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          If 0, then everything ran OK.
 | 
						|
*>
 | 
						|
*>-----------------------------------------------------------------------
 | 
						|
*>
 | 
						|
*>       Some Local Variables and Parameters:
 | 
						|
*>       ---- ----- --------- --- ----------
 | 
						|
*>       ZERO, ONE       Real 0 and 1.
 | 
						|
*>       MAXTYP          The number of types defined.
 | 
						|
*>       NTEST           The number of tests performed, or which can
 | 
						|
*>                       be performed so far, for the current matrix.
 | 
						|
*>       NTESTT          The total number of tests performed so far.
 | 
						|
*>       NMAX            Largest value in NN.
 | 
						|
*>       NMATS           The number of matrices generated so far.
 | 
						|
*>       NERRS           The number of tests which have exceeded THRESH
 | 
						|
*>                       so far.
 | 
						|
*>       COND, IMODE     Values to be passed to the matrix generators.
 | 
						|
*>       ANORM           Norm of A; passed to matrix generators.
 | 
						|
*>
 | 
						|
*>       OVFL, UNFL      Overflow and underflow thresholds.
 | 
						|
*>       ULP, ULPINV     Finest relative precision and its inverse.
 | 
						|
*>       RTOVFL, RTUNFL  Square roots of the previous 2 values.
 | 
						|
*>               The following four arrays decode JTYPE:
 | 
						|
*>       KTYPE(j)        The general type (1-10) for type "j".
 | 
						|
*>       KMODE(j)        The MODE value to be passed to the matrix
 | 
						|
*>                       generator for type "j".
 | 
						|
*>       KMAGN(j)        The order of magnitude ( O(1),
 | 
						|
*>                       O(overflow^(1/2) ), O(underflow^(1/2) )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup single_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SCHKBB( NSIZES, MVAL, NVAL, NWDTHS, KK, NTYPES, DOTYPE,
 | 
						|
     $                   NRHS, ISEED, THRESH, NOUNIT, A, LDA, AB, LDAB,
 | 
						|
     $                   BD, BE, Q, LDQ, P, LDP, C, LDC, CC, WORK,
 | 
						|
     $                   LWORK, RESULT, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (input) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, LDAB, LDC, LDP, LDQ, LWORK, NOUNIT,
 | 
						|
     $                   NRHS, NSIZES, NTYPES, NWDTHS
 | 
						|
      REAL               THRESH
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            DOTYPE( * )
 | 
						|
      INTEGER            ISEED( 4 ), KK( * ), MVAL( * ), NVAL( * )
 | 
						|
      REAL               A( LDA, * ), AB( LDAB, * ), BD( * ), BE( * ),
 | 
						|
     $                   C( LDC, * ), CC( LDC, * ), P( LDP, * ),
 | 
						|
     $                   Q( LDQ, * ), RESULT( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | 
						|
      INTEGER            MAXTYP
 | 
						|
      PARAMETER          ( MAXTYP = 15 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            BADMM, BADNN, BADNNB
 | 
						|
      INTEGER            I, IINFO, IMODE, ITYPE, J, JCOL, JR, JSIZE,
 | 
						|
     $                   JTYPE, JWIDTH, K, KL, KMAX, KU, M, MMAX, MNMAX,
 | 
						|
     $                   MNMIN, MTYPES, N, NERRS, NMATS, NMAX, NTEST,
 | 
						|
     $                   NTESTT
 | 
						|
      REAL               AMNINV, ANORM, COND, OVFL, RTOVFL, RTUNFL, ULP,
 | 
						|
     $                   ULPINV, UNFL
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
 | 
						|
     $                   KMODE( MAXTYP ), KTYPE( MAXTYP )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SLAMCH
 | 
						|
      EXTERNAL           SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SBDT01, SBDT02, SGBBRD, SLACPY, SLAHD2, SLASET,
 | 
						|
     $                   SLASUM, SLATMR, SLATMS, SORT01, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, MIN, REAL, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Data statements ..
 | 
						|
      DATA               KTYPE / 1, 2, 5*4, 5*6, 3*9 /
 | 
						|
      DATA               KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3 /
 | 
						|
      DATA               KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
 | 
						|
     $                   0, 0 /
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      NTESTT = 0
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Important constants
 | 
						|
*
 | 
						|
      BADMM = .FALSE.
 | 
						|
      BADNN = .FALSE.
 | 
						|
      MMAX = 1
 | 
						|
      NMAX = 1
 | 
						|
      MNMAX = 1
 | 
						|
      DO 10 J = 1, NSIZES
 | 
						|
         MMAX = MAX( MMAX, MVAL( J ) )
 | 
						|
         IF( MVAL( J ).LT.0 )
 | 
						|
     $      BADMM = .TRUE.
 | 
						|
         NMAX = MAX( NMAX, NVAL( J ) )
 | 
						|
         IF( NVAL( J ).LT.0 )
 | 
						|
     $      BADNN = .TRUE.
 | 
						|
         MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      BADNNB = .FALSE.
 | 
						|
      KMAX = 0
 | 
						|
      DO 20 J = 1, NWDTHS
 | 
						|
         KMAX = MAX( KMAX, KK( J ) )
 | 
						|
         IF( KK( J ).LT.0 )
 | 
						|
     $      BADNNB = .TRUE.
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
*     Check for errors
 | 
						|
*
 | 
						|
      IF( NSIZES.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( BADMM ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( BADNN ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( NWDTHS.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( BADNNB ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( NTYPES.LT.0 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDA.LT.NMAX ) THEN
 | 
						|
         INFO = -13
 | 
						|
      ELSE IF( LDAB.LT.2*KMAX+1 ) THEN
 | 
						|
         INFO = -15
 | 
						|
      ELSE IF( LDQ.LT.NMAX ) THEN
 | 
						|
         INFO = -19
 | 
						|
      ELSE IF( LDP.LT.NMAX ) THEN
 | 
						|
         INFO = -21
 | 
						|
      ELSE IF( LDC.LT.NMAX ) THEN
 | 
						|
         INFO = -23
 | 
						|
      ELSE IF( ( MAX( LDA, NMAX )+1 )*NMAX.GT.LWORK ) THEN
 | 
						|
         INFO = -26
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SCHKBB', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 .OR. NWDTHS.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     More Important constants
 | 
						|
*
 | 
						|
      UNFL = SLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = ONE / UNFL
 | 
						|
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | 
						|
      ULPINV = ONE / ULP
 | 
						|
      RTUNFL = SQRT( UNFL )
 | 
						|
      RTOVFL = SQRT( OVFL )
 | 
						|
*
 | 
						|
*     Loop over sizes, widths, types
 | 
						|
*
 | 
						|
      NERRS = 0
 | 
						|
      NMATS = 0
 | 
						|
*
 | 
						|
      DO 160 JSIZE = 1, NSIZES
 | 
						|
         M = MVAL( JSIZE )
 | 
						|
         N = NVAL( JSIZE )
 | 
						|
         MNMIN = MIN( M, N )
 | 
						|
         AMNINV = ONE / REAL( MAX( 1, M, N ) )
 | 
						|
*
 | 
						|
         DO 150 JWIDTH = 1, NWDTHS
 | 
						|
            K = KK( JWIDTH )
 | 
						|
            IF( K.GE.M .AND. K.GE.N )
 | 
						|
     $         GO TO 150
 | 
						|
            KL = MAX( 0, MIN( M-1, K ) )
 | 
						|
            KU = MAX( 0, MIN( N-1, K ) )
 | 
						|
*
 | 
						|
            IF( NSIZES.NE.1 ) THEN
 | 
						|
               MTYPES = MIN( MAXTYP, NTYPES )
 | 
						|
            ELSE
 | 
						|
               MTYPES = MIN( MAXTYP+1, NTYPES )
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            DO 140 JTYPE = 1, MTYPES
 | 
						|
               IF( .NOT.DOTYPE( JTYPE ) )
 | 
						|
     $            GO TO 140
 | 
						|
               NMATS = NMATS + 1
 | 
						|
               NTEST = 0
 | 
						|
*
 | 
						|
               DO 30 J = 1, 4
 | 
						|
                  IOLDSD( J ) = ISEED( J )
 | 
						|
   30          CONTINUE
 | 
						|
*
 | 
						|
*              Compute "A".
 | 
						|
*
 | 
						|
*              Control parameters:
 | 
						|
*
 | 
						|
*                  KMAGN  KMODE        KTYPE
 | 
						|
*              =1  O(1)   clustered 1  zero
 | 
						|
*              =2  large  clustered 2  identity
 | 
						|
*              =3  small  exponential  (none)
 | 
						|
*              =4         arithmetic   diagonal, (w/ singular values)
 | 
						|
*              =5         random log   (none)
 | 
						|
*              =6         random       nonhermitian, w/ singular values
 | 
						|
*              =7                      (none)
 | 
						|
*              =8                      (none)
 | 
						|
*              =9                      random nonhermitian
 | 
						|
*
 | 
						|
               IF( MTYPES.GT.MAXTYP )
 | 
						|
     $            GO TO 90
 | 
						|
*
 | 
						|
               ITYPE = KTYPE( JTYPE )
 | 
						|
               IMODE = KMODE( JTYPE )
 | 
						|
*
 | 
						|
*              Compute norm
 | 
						|
*
 | 
						|
               GO TO ( 40, 50, 60 )KMAGN( JTYPE )
 | 
						|
*
 | 
						|
   40          CONTINUE
 | 
						|
               ANORM = ONE
 | 
						|
               GO TO 70
 | 
						|
*
 | 
						|
   50          CONTINUE
 | 
						|
               ANORM = ( RTOVFL*ULP )*AMNINV
 | 
						|
               GO TO 70
 | 
						|
*
 | 
						|
   60          CONTINUE
 | 
						|
               ANORM = RTUNFL*MAX( M, N )*ULPINV
 | 
						|
               GO TO 70
 | 
						|
*
 | 
						|
   70          CONTINUE
 | 
						|
*
 | 
						|
               CALL SLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
 | 
						|
               CALL SLASET( 'Full', LDAB, N, ZERO, ZERO, AB, LDAB )
 | 
						|
               IINFO = 0
 | 
						|
               COND = ULPINV
 | 
						|
*
 | 
						|
*              Special Matrices -- Identity & Jordan block
 | 
						|
*
 | 
						|
*                 Zero
 | 
						|
*
 | 
						|
               IF( ITYPE.EQ.1 ) THEN
 | 
						|
                  IINFO = 0
 | 
						|
*
 | 
						|
               ELSE IF( ITYPE.EQ.2 ) THEN
 | 
						|
*
 | 
						|
*                 Identity
 | 
						|
*
 | 
						|
                  DO 80 JCOL = 1, N
 | 
						|
                     A( JCOL, JCOL ) = ANORM
 | 
						|
   80             CONTINUE
 | 
						|
*
 | 
						|
               ELSE IF( ITYPE.EQ.4 ) THEN
 | 
						|
*
 | 
						|
*                 Diagonal Matrix, singular values specified
 | 
						|
*
 | 
						|
                  CALL SLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
 | 
						|
     $                         ANORM, 0, 0, 'N', A, LDA, WORK( M+1 ),
 | 
						|
     $                         IINFO )
 | 
						|
*
 | 
						|
               ELSE IF( ITYPE.EQ.6 ) THEN
 | 
						|
*
 | 
						|
*                 Nonhermitian, singular values specified
 | 
						|
*
 | 
						|
                  CALL SLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
 | 
						|
     $                         ANORM, KL, KU, 'N', A, LDA, WORK( M+1 ),
 | 
						|
     $                         IINFO )
 | 
						|
*
 | 
						|
               ELSE IF( ITYPE.EQ.9 ) THEN
 | 
						|
*
 | 
						|
*                 Nonhermitian, random entries
 | 
						|
*
 | 
						|
                  CALL SLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | 
						|
     $                         'T', 'N', WORK( N+1 ), 1, ONE,
 | 
						|
     $                         WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, KL,
 | 
						|
     $                         KU, ZERO, ANORM, 'N', A, LDA, IDUMMA,
 | 
						|
     $                         IINFO )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
                  IINFO = 1
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Generate Right-Hand Side
 | 
						|
*
 | 
						|
               CALL SLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
 | 
						|
     $                      'T', 'N', WORK( M+1 ), 1, ONE,
 | 
						|
     $                      WORK( 2*M+1 ), 1, ONE, 'N', IDUMMA, M, NRHS,
 | 
						|
     $                      ZERO, ONE, 'NO', C, LDC, IDUMMA, IINFO )
 | 
						|
*
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N,
 | 
						|
     $               JTYPE, IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  RETURN
 | 
						|
               END IF
 | 
						|
*
 | 
						|
   90          CONTINUE
 | 
						|
*
 | 
						|
*              Copy A to band storage.
 | 
						|
*
 | 
						|
               DO 110 J = 1, N
 | 
						|
                  DO 100 I = MAX( 1, J-KU ), MIN( M, J+KL )
 | 
						|
                     AB( KU+1+I-J, J ) = A( I, J )
 | 
						|
  100             CONTINUE
 | 
						|
  110          CONTINUE
 | 
						|
*
 | 
						|
*              Copy C
 | 
						|
*
 | 
						|
               CALL SLACPY( 'Full', M, NRHS, C, LDC, CC, LDC )
 | 
						|
*
 | 
						|
*              Call SGBBRD to compute B, Q and P, and to update C.
 | 
						|
*
 | 
						|
               CALL SGBBRD( 'B', M, N, NRHS, KL, KU, AB, LDAB, BD, BE,
 | 
						|
     $                      Q, LDQ, P, LDP, CC, LDC, WORK, IINFO )
 | 
						|
*
 | 
						|
               IF( IINFO.NE.0 ) THEN
 | 
						|
                  WRITE( NOUNIT, FMT = 9999 )'SGBBRD', IINFO, N, JTYPE,
 | 
						|
     $               IOLDSD
 | 
						|
                  INFO = ABS( IINFO )
 | 
						|
                  IF( IINFO.LT.0 ) THEN
 | 
						|
                     RETURN
 | 
						|
                  ELSE
 | 
						|
                     RESULT( 1 ) = ULPINV
 | 
						|
                     GO TO 120
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
*
 | 
						|
*              Test 1:  Check the decomposition A := Q * B * P'
 | 
						|
*                   2:  Check the orthogonality of Q
 | 
						|
*                   3:  Check the orthogonality of P
 | 
						|
*                   4:  Check the computation of Q' * C
 | 
						|
*
 | 
						|
               CALL SBDT01( M, N, -1, A, LDA, Q, LDQ, BD, BE, P, LDP,
 | 
						|
     $                      WORK, RESULT( 1 ) )
 | 
						|
               CALL SORT01( 'Columns', M, M, Q, LDQ, WORK, LWORK,
 | 
						|
     $                      RESULT( 2 ) )
 | 
						|
               CALL SORT01( 'Rows', N, N, P, LDP, WORK, LWORK,
 | 
						|
     $                      RESULT( 3 ) )
 | 
						|
               CALL SBDT02( M, NRHS, C, LDC, CC, LDC, Q, LDQ, WORK,
 | 
						|
     $                      RESULT( 4 ) )
 | 
						|
*
 | 
						|
*              End of Loop -- Check for RESULT(j) > THRESH
 | 
						|
*
 | 
						|
               NTEST = 4
 | 
						|
  120          CONTINUE
 | 
						|
               NTESTT = NTESTT + NTEST
 | 
						|
*
 | 
						|
*              Print out tests which fail.
 | 
						|
*
 | 
						|
               DO 130 JR = 1, NTEST
 | 
						|
                  IF( RESULT( JR ).GE.THRESH ) THEN
 | 
						|
                     IF( NERRS.EQ.0 )
 | 
						|
     $                  CALL SLAHD2( NOUNIT, 'SBB' )
 | 
						|
                     NERRS = NERRS + 1
 | 
						|
                     WRITE( NOUNIT, FMT = 9998 )M, N, K, IOLDSD, JTYPE,
 | 
						|
     $                  JR, RESULT( JR )
 | 
						|
                  END IF
 | 
						|
  130          CONTINUE
 | 
						|
*
 | 
						|
  140       CONTINUE
 | 
						|
  150    CONTINUE
 | 
						|
  160 CONTINUE
 | 
						|
*
 | 
						|
*     Summary
 | 
						|
*
 | 
						|
      CALL SLASUM( 'SBB', NOUNIT, NERRS, NTESTT )
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
 9999 FORMAT( ' SCHKBB: ', A, ' returned INFO=', I5, '.', / 9X, 'M=',
 | 
						|
     $      I5, ' N=', I5, ' K=', I5, ', JTYPE=', I5, ', ISEED=(',
 | 
						|
     $      3( I5, ',' ), I5, ')' )
 | 
						|
 9998 FORMAT( ' M =', I4, ' N=', I4, ', K=', I3, ', seed=',
 | 
						|
     $      4( I4, ',' ), ' type ', I2, ', test(', I2, ')=', G10.3 )
 | 
						|
*
 | 
						|
*     End of SCHKBB
 | 
						|
*
 | 
						|
      END
 |