292 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			292 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CGET52
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
 | 
						|
*                          WORK, RWORK, RESULT )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            LEFT
 | 
						|
*       INTEGER            LDA, LDB, LDE, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               RESULT( 2 ), RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | 
						|
*      $                   BETA( * ), E( LDE, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CGET52  does an eigenvector check for the generalized eigenvalue
 | 
						|
*> problem.
 | 
						|
*>
 | 
						|
*> The basic test for right eigenvectors is:
 | 
						|
*>
 | 
						|
*>                           | b(i) A E(i) -  a(i) B E(i) |
 | 
						|
*>         RESULT(1) = max   -------------------------------
 | 
						|
*>                      i    n ulp max( |b(i) A|, |a(i) B| )
 | 
						|
*>
 | 
						|
*> using the 1-norm.  Here, a(i)/b(i) = w is the i-th generalized
 | 
						|
*> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
 | 
						|
*> generalized eigenvalue of m A - B.
 | 
						|
*>
 | 
						|
*>                         H   H  _      _
 | 
						|
*> For left eigenvectors, A , B , a, and b  are used.
 | 
						|
*>
 | 
						|
*> CGET52 also tests the normalization of E.  Each eigenvector is
 | 
						|
*> supposed to be normalized so that the maximum "absolute value"
 | 
						|
*> of its elements is 1, where in this case, "absolute value"
 | 
						|
*> of a complex value x is  |Re(x)| + |Im(x)| ; let us call this
 | 
						|
*> maximum "absolute value" norm of a vector v  M(v).  
 | 
						|
*> if a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
 | 
						|
*> vector. The normalization test is:
 | 
						|
*>
 | 
						|
*>         RESULT(2) =      max       | M(v(i)) - 1 | / ( n ulp )
 | 
						|
*>                    eigenvectors v(i)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] LEFT
 | 
						|
*> \verbatim
 | 
						|
*>          LEFT is LOGICAL
 | 
						|
*>          =.TRUE.:  The eigenvectors in the columns of E are assumed
 | 
						|
*>                    to be *left* eigenvectors.
 | 
						|
*>          =.FALSE.: The eigenvectors in the columns of E are assumed
 | 
						|
*>                    to be *right* eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The size of the matrices.  If it is zero, CGET52 does
 | 
						|
*>          nothing.  It must be at least zero.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, N)
 | 
						|
*>          The matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of A.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX array, dimension (LDB, N)
 | 
						|
*>          The matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of B.  It must be at least 1
 | 
						|
*>          and at least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is COMPLEX array, dimension (LDE, N)
 | 
						|
*>          The matrix of eigenvectors.  It must be O( 1 ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDE
 | 
						|
*> \verbatim
 | 
						|
*>          LDE is INTEGER
 | 
						|
*>          The leading dimension of E.  It must be at least 1 and at
 | 
						|
*>          least N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is COMPLEX array, dimension (N)
 | 
						|
*>          The values a(i) as described above, which, along with b(i),
 | 
						|
*>          define the generalized eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is COMPLEX array, dimension (N)
 | 
						|
*>          The values b(i) as described above, which, along with a(i),
 | 
						|
*>          define the generalized eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX array, dimension (N**2)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESULT
 | 
						|
*> \verbatim
 | 
						|
*>          RESULT is REAL array, dimension (2)
 | 
						|
*>          The values computed by the test described above.  If A E or
 | 
						|
*>          B E is likely to overflow, then RESULT(1:2) is set to
 | 
						|
*>          10 / ulp.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex_eig
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
 | 
						|
     $                   WORK, RWORK, RESULT )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            LEFT
 | 
						|
      INTEGER            LDA, LDB, LDE, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               RESULT( 2 ), RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
 | 
						|
     $                   BETA( * ), E( LDE, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
      COMPLEX            CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | 
						|
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      CHARACTER          NORMAB, TRANS
 | 
						|
      INTEGER            J, JVEC
 | 
						|
      REAL               ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM,
 | 
						|
     $                   ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1,
 | 
						|
     $                   ULP
 | 
						|
      COMPLEX            ACOEFF, ALPHAI, BCOEFF, BETAI, X
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               CLANGE, SLAMCH
 | 
						|
      EXTERNAL           CLANGE, SLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           CGEMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, AIMAG, CONJG, MAX, REAL
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      REAL               ABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      RESULT( 1 ) = ZERO
 | 
						|
      RESULT( 2 ) = ZERO
 | 
						|
      IF( N.LE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      SAFMIN = SLAMCH( 'Safe minimum' )
 | 
						|
      SAFMAX = ONE / SAFMIN
 | 
						|
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
 | 
						|
*
 | 
						|
      IF( LEFT ) THEN
 | 
						|
         TRANS = 'C'
 | 
						|
         NORMAB = 'I'
 | 
						|
      ELSE
 | 
						|
         TRANS = 'N'
 | 
						|
         NORMAB = 'O'
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Norm of A, B, and E:
 | 
						|
*
 | 
						|
      ANORM = MAX( CLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN )
 | 
						|
      BNORM = MAX( CLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN )
 | 
						|
      ENORM = MAX( CLANGE( 'O', N, N, E, LDE, RWORK ), ULP )
 | 
						|
      ALFMAX = SAFMAX / MAX( ONE, BNORM )
 | 
						|
      BETMAX = SAFMAX / MAX( ONE, ANORM )
 | 
						|
*
 | 
						|
*     Compute error matrix.
 | 
						|
*     Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B| |b(i) A| )
 | 
						|
*
 | 
						|
      DO 10 JVEC = 1, N
 | 
						|
         ALPHAI = ALPHA( JVEC )
 | 
						|
         BETAI = BETA( JVEC )
 | 
						|
         ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) )
 | 
						|
         IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR.
 | 
						|
     $       ABMAX.LT.ONE ) THEN
 | 
						|
            SCALE = ONE / MAX( ABMAX, SAFMIN )
 | 
						|
            ALPHAI = SCALE*ALPHAI
 | 
						|
            BETAI = SCALE*BETAI
 | 
						|
         END IF
 | 
						|
         SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM,
 | 
						|
     $           SAFMIN )
 | 
						|
         ACOEFF = SCALE*BETAI
 | 
						|
         BCOEFF = SCALE*ALPHAI
 | 
						|
         IF( LEFT ) THEN
 | 
						|
            ACOEFF = CONJG( ACOEFF )
 | 
						|
            BCOEFF = CONJG( BCOEFF )
 | 
						|
         END IF
 | 
						|
         CALL CGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1,
 | 
						|
     $               CZERO, WORK( N*( JVEC-1 )+1 ), 1 )
 | 
						|
         CALL CGEMV( TRANS, N, N, -BCOEFF, B, LDA, E( 1, JVEC ), 1,
 | 
						|
     $               CONE, WORK( N*( JVEC-1 )+1 ), 1 )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
 | 
						|
*
 | 
						|
*     Compute RESULT(1)
 | 
						|
*
 | 
						|
      RESULT( 1 ) = ERRNRM / ULP
 | 
						|
*
 | 
						|
*     Normalization of E:
 | 
						|
*
 | 
						|
      ENRMER = ZERO
 | 
						|
      DO 30 JVEC = 1, N
 | 
						|
         TEMP1 = ZERO
 | 
						|
         DO 20 J = 1, N
 | 
						|
            TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) )
 | 
						|
   20    CONTINUE
 | 
						|
         ENRMER = MAX( ENRMER, TEMP1-ONE )
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Compute RESULT(2) : the normalization error in E.
 | 
						|
*
 | 
						|
      RESULT( 2 ) = ENRMER / ( REAL( N )*ULP )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CGET52
 | 
						|
*
 | 
						|
      END
 |