458 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> ZCPOSV computes the solution to system of linear equations A * X = B for PO matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZCPOSV + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcposv.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcposv.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcposv.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
 | 
						|
*                          SWORK, RWORK, ITER, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   RWORK( * )
 | 
						|
*       COMPLEX            SWORK( * )
 | 
						|
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
 | 
						|
*      $                   X( LDX, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZCPOSV computes the solution to a complex system of linear equations
 | 
						|
*>    A * X = B,
 | 
						|
*> where A is an N-by-N Hermitian positive definite matrix and X and B
 | 
						|
*> are N-by-NRHS matrices.
 | 
						|
*>
 | 
						|
*> ZCPOSV first attempts to factorize the matrix in COMPLEX and use this
 | 
						|
*> factorization within an iterative refinement procedure to produce a
 | 
						|
*> solution with COMPLEX*16 normwise backward error quality (see below).
 | 
						|
*> If the approach fails the method switches to a COMPLEX*16
 | 
						|
*> factorization and solve.
 | 
						|
*>
 | 
						|
*> The iterative refinement is not going to be a winning strategy if
 | 
						|
*> the ratio COMPLEX performance over COMPLEX*16 performance is too
 | 
						|
*> small. A reasonable strategy should take the number of right-hand
 | 
						|
*> sides and the size of the matrix into account. This might be done
 | 
						|
*> with a call to ILAENV in the future. Up to now, we always try
 | 
						|
*> iterative refinement.
 | 
						|
*>
 | 
						|
*> The iterative refinement process is stopped if
 | 
						|
*>     ITER > ITERMAX
 | 
						|
*> or for all the RHS we have:
 | 
						|
*>     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
 | 
						|
*> where
 | 
						|
*>     o ITER is the number of the current iteration in the iterative
 | 
						|
*>       refinement process
 | 
						|
*>     o RNRM is the infinity-norm of the residual
 | 
						|
*>     o XNRM is the infinity-norm of the solution
 | 
						|
*>     o ANRM is the infinity-operator-norm of the matrix A
 | 
						|
*>     o EPS is the machine epsilon returned by DLAMCH('Epsilon')
 | 
						|
*> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
 | 
						|
*> respectively.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          = 'U':  Upper triangle of A is stored;
 | 
						|
*>          = 'L':  Lower triangle of A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of linear equations, i.e., the order of the
 | 
						|
*>          matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of right hand sides, i.e., the number of columns
 | 
						|
*>          of the matrix B.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array,
 | 
						|
*>          dimension (LDA,N)
 | 
						|
*>          On entry, the Hermitian matrix A. If UPLO = 'U', the leading
 | 
						|
*>          N-by-N upper triangular part of A contains the upper
 | 
						|
*>          triangular part of the matrix A, and the strictly lower
 | 
						|
*>          triangular part of A is not referenced.  If UPLO = 'L', the
 | 
						|
*>          leading N-by-N lower triangular part of A contains the lower
 | 
						|
*>          triangular part of the matrix A, and the strictly upper
 | 
						|
*>          triangular part of A is not referenced.
 | 
						|
*>
 | 
						|
*>          Note that the imaginary parts of the diagonal
 | 
						|
*>          elements need not be set and are assumed to be zero.
 | 
						|
*>
 | 
						|
*>          On exit, if iterative refinement has been successfully used
 | 
						|
*>          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
 | 
						|
*>          unchanged, if double precision factorization has been used
 | 
						|
*>          (INFO.EQ.0 and ITER.LT.0, see description below), then the
 | 
						|
*>          array A contains the factor U or L from the Cholesky
 | 
						|
*>          factorization A = U**H*U or A = L*L**H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | 
						|
*>          The N-by-NRHS right hand side matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
 | 
						|
*>          If INFO = 0, the N-by-NRHS solution matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension (N*NRHS)
 | 
						|
*>          This array is used to hold the residual vectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SWORK
 | 
						|
*> \verbatim
 | 
						|
*>          SWORK is COMPLEX array, dimension (N*(N+NRHS))
 | 
						|
*>          This array is used to use the single precision matrix and the
 | 
						|
*>          right-hand sides or solutions in single precision.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is DOUBLE PRECISION array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ITER
 | 
						|
*> \verbatim
 | 
						|
*>          ITER is INTEGER
 | 
						|
*>          < 0: iterative refinement has failed, COMPLEX*16
 | 
						|
*>               factorization has been performed
 | 
						|
*>               -1 : the routine fell back to full precision for
 | 
						|
*>                    implementation- or machine-specific reasons
 | 
						|
*>               -2 : narrowing the precision induced an overflow,
 | 
						|
*>                    the routine fell back to full precision
 | 
						|
*>               -3 : failure of CPOTRF
 | 
						|
*>               -31: stop the iterative refinement after the 30th
 | 
						|
*>                    iterations
 | 
						|
*>          > 0: iterative refinement has been sucessfully used.
 | 
						|
*>               Returns the number of iterations
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  if INFO = i, the leading minor of order i of
 | 
						|
*>                (COMPLEX*16) A is not positive definite, so the
 | 
						|
*>                factorization could not be completed, and the solution
 | 
						|
*>                has not been computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date November 2011
 | 
						|
*
 | 
						|
*> \ingroup complex16POsolve
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZCPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
 | 
						|
     $                   SWORK, RWORK, ITER, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.4.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   RWORK( * )
 | 
						|
      COMPLEX            SWORK( * )
 | 
						|
      COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ),
 | 
						|
     $                   X( LDX, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      LOGICAL            DOITREF
 | 
						|
      PARAMETER          ( DOITREF = .TRUE. )
 | 
						|
*
 | 
						|
      INTEGER            ITERMAX
 | 
						|
      PARAMETER          ( ITERMAX = 30 )
 | 
						|
*
 | 
						|
      DOUBLE PRECISION   BWDMAX
 | 
						|
      PARAMETER          ( BWDMAX = 1.0E+00 )
 | 
						|
*
 | 
						|
      COMPLEX*16         NEGONE, ONE
 | 
						|
      PARAMETER          ( NEGONE = ( -1.0D+00, 0.0D+00 ),
 | 
						|
     $                   ONE = ( 1.0D+00, 0.0D+00 ) )
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IITER, PTSA, PTSX
 | 
						|
      DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
 | 
						|
      COMPLEX*16         ZDUM
 | 
						|
*
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZAXPY, ZHEMM, ZLACPY, ZLAT2C, ZLAG2C, CLAG2Z,
 | 
						|
     $                   CPOTRF, CPOTRS, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            IZAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH, ZLANHE
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           IZAMAX, DLAMCH, ZLANHE, LSAME
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, MAX, SQRT
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   CABS1
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      ITER = 0
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( NRHS.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -9
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZCPOSV', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if (N.EQ.0).
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Skip single precision iterative refinement if a priori slower
 | 
						|
*     than double precision factorization.
 | 
						|
*
 | 
						|
      IF( .NOT.DOITREF ) THEN
 | 
						|
         ITER = -1
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute some constants.
 | 
						|
*
 | 
						|
      ANRM = ZLANHE( 'I', UPLO, N, A, LDA, RWORK )
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
 | 
						|
*
 | 
						|
*     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
 | 
						|
*
 | 
						|
      PTSA = 1
 | 
						|
      PTSX = PTSA + N*N
 | 
						|
*
 | 
						|
*     Convert B from double precision to single precision and store the
 | 
						|
*     result in SX.
 | 
						|
*
 | 
						|
      CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         ITER = -2
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Convert A from double precision to single precision and store the
 | 
						|
*     result in SA.
 | 
						|
*
 | 
						|
      CALL ZLAT2C( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         ITER = -2
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the Cholesky factorization of SA.
 | 
						|
*
 | 
						|
      CALL CPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         ITER = -3
 | 
						|
         GO TO 40
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Solve the system SA*SX = SB.
 | 
						|
*
 | 
						|
      CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
 | 
						|
     $             INFO )
 | 
						|
*
 | 
						|
*     Convert SX back to COMPLEX*16
 | 
						|
*
 | 
						|
      CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
 | 
						|
*
 | 
						|
*     Compute R = B - AX (R is WORK).
 | 
						|
*
 | 
						|
      CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
 | 
						|
*
 | 
						|
      CALL ZHEMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
 | 
						|
     $            WORK, N )
 | 
						|
*
 | 
						|
*     Check whether the NRHS normwise backward errors satisfy the
 | 
						|
*     stopping criterion. If yes, set ITER=0 and return.
 | 
						|
*
 | 
						|
      DO I = 1, NRHS
 | 
						|
         XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
 | 
						|
         RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
 | 
						|
         IF( RNRM.GT.XNRM*CTE )
 | 
						|
     $      GO TO 10
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     If we are here, the NRHS normwise backward errors satisfy the
 | 
						|
*     stopping criterion. We are good to exit.
 | 
						|
*
 | 
						|
      ITER = 0
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      DO 30 IITER = 1, ITERMAX
 | 
						|
*
 | 
						|
*        Convert R (in WORK) from double precision to single precision
 | 
						|
*        and store the result in SX.
 | 
						|
*
 | 
						|
         CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
 | 
						|
*
 | 
						|
         IF( INFO.NE.0 ) THEN
 | 
						|
            ITER = -2
 | 
						|
            GO TO 40
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Solve the system SA*SX = SR.
 | 
						|
*
 | 
						|
         CALL CPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
 | 
						|
     $                INFO )
 | 
						|
*
 | 
						|
*        Convert SX back to double precision and update the current
 | 
						|
*        iterate.
 | 
						|
*
 | 
						|
         CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
 | 
						|
*
 | 
						|
         DO I = 1, NRHS
 | 
						|
            CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        Compute R = B - AX (R is WORK).
 | 
						|
*
 | 
						|
         CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
 | 
						|
*
 | 
						|
         CALL ZHEMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
 | 
						|
     $               WORK, N )
 | 
						|
*
 | 
						|
*        Check whether the NRHS normwise backward errors satisfy the
 | 
						|
*        stopping criterion. If yes, set ITER=IITER>0 and return.
 | 
						|
*
 | 
						|
         DO I = 1, NRHS
 | 
						|
            XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
 | 
						|
            RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
 | 
						|
            IF( RNRM.GT.XNRM*CTE )
 | 
						|
     $         GO TO 20
 | 
						|
         END DO
 | 
						|
*
 | 
						|
*        If we are here, the NRHS normwise backward errors satisfy the
 | 
						|
*        stopping criterion, we are good to exit.
 | 
						|
*
 | 
						|
         ITER = IITER
 | 
						|
*
 | 
						|
         RETURN
 | 
						|
*
 | 
						|
   20    CONTINUE
 | 
						|
*
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     If we are at this place of the code, this is because we have
 | 
						|
*     performed ITER=ITERMAX iterations and never satisified the
 | 
						|
*     stopping criterion, set up the ITER flag accordingly and follow
 | 
						|
*     up on double precision routine.
 | 
						|
*
 | 
						|
      ITER = -ITERMAX - 1
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
*     Single-precision iterative refinement failed to converge to a
 | 
						|
*     satisfactory solution, so we resort to double precision.
 | 
						|
*
 | 
						|
      CALL ZPOTRF( UPLO, N, A, LDA, INFO )
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
 | 
						|
      CALL ZPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZCPOSV.
 | 
						|
*
 | 
						|
      END
 |