451 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			451 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SSYTRI_ROOK
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSYTRI_ROOK + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytri_rook.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytri_rook.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytri_rook.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            INFO, LDA, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       REAL               A( LDA, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSYTRI_ROOK computes the inverse of a real symmetric
 | 
						|
*> matrix A using the factorization A = U*D*U**T or A = L*D*L**T
 | 
						|
*> computed by SSYTRF_ROOK.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the details of the factorization are stored
 | 
						|
*>          as an upper or lower triangular matrix.
 | 
						|
*>          = 'U':  Upper triangular, form is A = U*D*U**T;
 | 
						|
*>          = 'L':  Lower triangular, form is A = L*D*L**T.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the block diagonal matrix D and the multipliers
 | 
						|
*>          used to obtain the factor U or L as computed by SSYTRF_ROOK.
 | 
						|
*>
 | 
						|
*>          On exit, if INFO = 0, the (symmetric) inverse of the original
 | 
						|
*>          matrix.  If UPLO = 'U', the upper triangular part of the
 | 
						|
*>          inverse is formed and the part of A below the diagonal is not
 | 
						|
*>          referenced; if UPLO = 'L' the lower triangular part of the
 | 
						|
*>          inverse is formed and the part of A above the diagonal is
 | 
						|
*>          not referenced.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          Details of the interchanges and the block structure of D
 | 
						|
*>          as determined by SSYTRF_ROOK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0: successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 | 
						|
*>               inverse could not be computed.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date April 2012
 | 
						|
*
 | 
						|
*> \ingroup realSYcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>   April 2012, Igor Kozachenko,
 | 
						|
*>                  Computer Science Division,
 | 
						|
*>                  University of California, Berkeley
 | 
						|
*>
 | 
						|
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
 | 
						|
*>                  School of Mathematics,
 | 
						|
*>                  University of Manchester
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSYTRI_ROOK( UPLO, N, A, LDA, IPIV, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.1) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     April 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            INFO, LDA, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      REAL               A( LDA, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            UPPER
 | 
						|
      INTEGER            K, KP, KSTEP
 | 
						|
      REAL               AK, AKKP1, AKP1, D, T, TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SDOT
 | 
						|
      EXTERNAL           LSAME, SDOT
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SSWAP, SSYMV, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      UPPER = LSAME( UPLO, 'U' )
 | 
						|
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SSYTRI_ROOK', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Check that the diagonal matrix D is nonsingular.
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Upper triangular storage: examine D from bottom to top
 | 
						|
*
 | 
						|
         DO 10 INFO = N, 1, -1
 | 
						|
            IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
 | 
						|
     $         RETURN
 | 
						|
   10    CONTINUE
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Lower triangular storage: examine D from top to bottom.
 | 
						|
*
 | 
						|
         DO 20 INFO = 1, N
 | 
						|
            IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
 | 
						|
     $         RETURN
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( UPPER ) THEN
 | 
						|
*
 | 
						|
*        Compute inv(A) from the factorization A = U*D*U**T.
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 to N in steps of
 | 
						|
*        1 or 2, depending on the size of the diagonal blocks.
 | 
						|
*
 | 
						|
         K = 1
 | 
						|
   30    CONTINUE
 | 
						|
*
 | 
						|
*        If K > N, exit from loop.
 | 
						|
*
 | 
						|
         IF( K.GT.N )
 | 
						|
     $      GO TO 40
 | 
						|
*
 | 
						|
         IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*           1 x 1 diagonal block
 | 
						|
*
 | 
						|
*           Invert the diagonal block.
 | 
						|
*
 | 
						|
            A( K, K ) = ONE / A( K, K )
 | 
						|
*
 | 
						|
*           Compute column K of the inverse.
 | 
						|
*
 | 
						|
            IF( K.GT.1 ) THEN
 | 
						|
               CALL SCOPY( K-1, A( 1, K ), 1, WORK, 1 )
 | 
						|
               CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
 | 
						|
     $                     A( 1, K ), 1 )
 | 
						|
               A( K, K ) = A( K, K ) - SDOT( K-1, WORK, 1, A( 1, K ),
 | 
						|
     $                     1 )
 | 
						|
            END IF
 | 
						|
            KSTEP = 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           2 x 2 diagonal block
 | 
						|
*
 | 
						|
*           Invert the diagonal block.
 | 
						|
*
 | 
						|
            T = ABS( A( K, K+1 ) )
 | 
						|
            AK = A( K, K ) / T
 | 
						|
            AKP1 = A( K+1, K+1 ) / T
 | 
						|
            AKKP1 = A( K, K+1 ) / T
 | 
						|
            D = T*( AK*AKP1-ONE )
 | 
						|
            A( K, K ) = AKP1 / D
 | 
						|
            A( K+1, K+1 ) = AK / D
 | 
						|
            A( K, K+1 ) = -AKKP1 / D
 | 
						|
*
 | 
						|
*           Compute columns K and K+1 of the inverse.
 | 
						|
*
 | 
						|
            IF( K.GT.1 ) THEN
 | 
						|
               CALL SCOPY( K-1, A( 1, K ), 1, WORK, 1 )
 | 
						|
               CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
 | 
						|
     $                     A( 1, K ), 1 )
 | 
						|
               A( K, K ) = A( K, K ) - SDOT( K-1, WORK, 1, A( 1, K ),
 | 
						|
     $                     1 )
 | 
						|
               A( K, K+1 ) = A( K, K+1 ) -
 | 
						|
     $                       SDOT( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
 | 
						|
               CALL SCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
 | 
						|
               CALL SSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
 | 
						|
     $                     A( 1, K+1 ), 1 )
 | 
						|
               A( K+1, K+1 ) = A( K+1, K+1 ) -
 | 
						|
     $                         SDOT( K-1, WORK, 1, A( 1, K+1 ), 1 )
 | 
						|
            END IF
 | 
						|
            KSTEP = 2
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( KSTEP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           Interchange rows and columns K and IPIV(K) in the leading
 | 
						|
*           submatrix A(1:k+1,1:k+1)
 | 
						|
*
 | 
						|
            KP = IPIV( K )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               IF( KP.GT.1 )
 | 
						|
     $             CALL SSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
 | 
						|
               CALL SSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
 | 
						|
               TEMP = A( K, K )
 | 
						|
               A( K, K ) = A( KP, KP )
 | 
						|
               A( KP, KP ) = TEMP
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Interchange rows and columns K and K+1 with -IPIV(K) and
 | 
						|
*           -IPIV(K+1)in the leading submatrix A(1:k+1,1:k+1)
 | 
						|
*
 | 
						|
            KP = -IPIV( K )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               IF( KP.GT.1 )
 | 
						|
     $            CALL SSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
 | 
						|
               CALL SSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
 | 
						|
*               
 | 
						|
               TEMP = A( K, K )
 | 
						|
               A( K, K ) = A( KP, KP )
 | 
						|
               A( KP, KP ) = TEMP
 | 
						|
               TEMP = A( K, K+1 )
 | 
						|
               A( K, K+1 ) = A( KP, K+1 )
 | 
						|
               A( KP, K+1 ) = TEMP
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            K = K + 1
 | 
						|
            KP = -IPIV( K )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               IF( KP.GT.1 )
 | 
						|
     $            CALL SSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
 | 
						|
               CALL SSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
 | 
						|
               TEMP = A( K, K )
 | 
						|
               A( K, K ) = A( KP, KP )
 | 
						|
               A( KP, KP ) = TEMP
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         K = K + 1
 | 
						|
         GO TO 30
 | 
						|
   40    CONTINUE
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Compute inv(A) from the factorization A = L*D*L**T.
 | 
						|
*
 | 
						|
*        K is the main loop index, increasing from 1 to N in steps of
 | 
						|
*        1 or 2, depending on the size of the diagonal blocks.
 | 
						|
*
 | 
						|
         K = N
 | 
						|
   50    CONTINUE
 | 
						|
*
 | 
						|
*        If K < 1, exit from loop.
 | 
						|
*
 | 
						|
         IF( K.LT.1 )
 | 
						|
     $      GO TO 60
 | 
						|
*
 | 
						|
         IF( IPIV( K ).GT.0 ) THEN
 | 
						|
*
 | 
						|
*           1 x 1 diagonal block
 | 
						|
*
 | 
						|
*           Invert the diagonal block.
 | 
						|
*
 | 
						|
            A( K, K ) = ONE / A( K, K )
 | 
						|
*
 | 
						|
*           Compute column K of the inverse.
 | 
						|
*
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               CALL SCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
 | 
						|
               CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
 | 
						|
     $                     ZERO, A( K+1, K ), 1 )
 | 
						|
               A( K, K ) = A( K, K ) - SDOT( N-K, WORK, 1, A( K+1, K ),
 | 
						|
     $                     1 )
 | 
						|
            END IF
 | 
						|
            KSTEP = 1
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           2 x 2 diagonal block
 | 
						|
*
 | 
						|
*           Invert the diagonal block.
 | 
						|
*
 | 
						|
            T = ABS( A( K, K-1 ) )
 | 
						|
            AK = A( K-1, K-1 ) / T
 | 
						|
            AKP1 = A( K, K ) / T
 | 
						|
            AKKP1 = A( K, K-1 ) / T
 | 
						|
            D = T*( AK*AKP1-ONE )
 | 
						|
            A( K-1, K-1 ) = AKP1 / D
 | 
						|
            A( K, K ) = AK / D
 | 
						|
            A( K, K-1 ) = -AKKP1 / D
 | 
						|
*
 | 
						|
*           Compute columns K-1 and K of the inverse.
 | 
						|
*
 | 
						|
            IF( K.LT.N ) THEN
 | 
						|
               CALL SCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
 | 
						|
               CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
 | 
						|
     $                     ZERO, A( K+1, K ), 1 )
 | 
						|
               A( K, K ) = A( K, K ) - SDOT( N-K, WORK, 1, A( K+1, K ),
 | 
						|
     $                     1 )
 | 
						|
               A( K, K-1 ) = A( K, K-1 ) -
 | 
						|
     $                       SDOT( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
 | 
						|
     $                       1 )
 | 
						|
               CALL SCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
 | 
						|
               CALL SSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
 | 
						|
     $                     ZERO, A( K+1, K-1 ), 1 )
 | 
						|
               A( K-1, K-1 ) = A( K-1, K-1 ) -
 | 
						|
     $                         SDOT( N-K, WORK, 1, A( K+1, K-1 ), 1 )
 | 
						|
            END IF
 | 
						|
            KSTEP = 2
 | 
						|
         END IF  
 | 
						|
*
 | 
						|
         IF( KSTEP.EQ.1 ) THEN
 | 
						|
*
 | 
						|
*           Interchange rows and columns K and IPIV(K) in the trailing
 | 
						|
*           submatrix A(k-1:n,k-1:n)
 | 
						|
*
 | 
						|
            KP = IPIV( K )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               IF( KP.LT.N )
 | 
						|
     $            CALL SSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
 | 
						|
               CALL SSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
 | 
						|
               TEMP = A( K, K )
 | 
						|
               A( K, K ) = A( KP, KP )
 | 
						|
               A( KP, KP ) = TEMP
 | 
						|
            END IF
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Interchange rows and columns K and K-1 with -IPIV(K) and
 | 
						|
*           -IPIV(K-1) in the trailing submatrix A(k-1:n,k-1:n)
 | 
						|
*
 | 
						|
            KP = -IPIV( K )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               IF( KP.LT.N )
 | 
						|
     $            CALL SSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
 | 
						|
               CALL SSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
 | 
						|
*
 | 
						|
               TEMP = A( K, K )
 | 
						|
               A( K, K ) = A( KP, KP )
 | 
						|
               A( KP, KP ) = TEMP
 | 
						|
               TEMP = A( K, K-1 )
 | 
						|
               A( K, K-1 ) = A( KP, K-1 )
 | 
						|
               A( KP, K-1 ) = TEMP
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            K = K - 1
 | 
						|
            KP = -IPIV( K )
 | 
						|
            IF( KP.NE.K ) THEN
 | 
						|
               IF( KP.LT.N )
 | 
						|
     $            CALL SSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
 | 
						|
               CALL SSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
 | 
						|
               TEMP = A( K, K )
 | 
						|
               A( K, K ) = A( KP, KP )
 | 
						|
               A( KP, KP ) = TEMP
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         K = K - 1
 | 
						|
         GO TO 50
 | 
						|
   60    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSYTRI_ROOK
 | 
						|
*
 | 
						|
      END
 |