256 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			256 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SGTCON
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SGTCON + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtcon.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtcon.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtcon.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
 | 
						|
*                          WORK, IWORK, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          NORM
 | 
						|
*       INTEGER            INFO, N
 | 
						|
*       REAL               ANORM, RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * ), IWORK( * )
 | 
						|
*       REAL               D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SGTCON estimates the reciprocal of the condition number of a real
 | 
						|
*> tridiagonal matrix A using the LU factorization as computed by
 | 
						|
*> SGTTRF.
 | 
						|
*>
 | 
						|
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
 | 
						|
*> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies whether the 1-norm condition number or the
 | 
						|
*>          infinity-norm condition number is required:
 | 
						|
*>          = '1' or 'O':  1-norm;
 | 
						|
*>          = 'I':         Infinity-norm.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DL
 | 
						|
*> \verbatim
 | 
						|
*>          DL is REAL array, dimension (N-1)
 | 
						|
*>          The (n-1) multipliers that define the matrix L from the
 | 
						|
*>          LU factorization of A as computed by SGTTRF.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          The n diagonal elements of the upper triangular matrix U from
 | 
						|
*>          the LU factorization of A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DU
 | 
						|
*> \verbatim
 | 
						|
*>          DU is REAL array, dimension (N-1)
 | 
						|
*>          The (n-1) elements of the first superdiagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DU2
 | 
						|
*> \verbatim
 | 
						|
*>          DU2 is REAL array, dimension (N-2)
 | 
						|
*>          The (n-2) elements of the second superdiagonal of U.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | 
						|
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | 
						|
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | 
						|
*>          required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ANORM
 | 
						|
*> \verbatim
 | 
						|
*>          ANORM is REAL
 | 
						|
*>          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 | 
						|
*>          If NORM = 'I', the infinity-norm of the original matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is REAL
 | 
						|
*>          The reciprocal of the condition number of the matrix A,
 | 
						|
*>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
 | 
						|
*>          estimate of the 1-norm of inv(A) computed in this routine.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (2*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup realGTcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SGTCON( NORM, N, DL, D, DU, DU2, IPIV, ANORM, RCOND,
 | 
						|
     $                   WORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          NORM
 | 
						|
      INTEGER            INFO, N
 | 
						|
      REAL               ANORM, RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * ), IWORK( * )
 | 
						|
      REAL               D( * ), DL( * ), DU( * ), DU2( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ONENRM
 | 
						|
      INTEGER            I, KASE, KASE1
 | 
						|
      REAL               AINVNM
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGTTRS, SLACN2, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
 | 
						|
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( ANORM.LT.ZERO ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SGTCON', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      RCOND = ZERO
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RETURN
 | 
						|
      ELSE IF( ANORM.EQ.ZERO ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Check that D(1:N) is non-zero.
 | 
						|
*
 | 
						|
      DO 10 I = 1, N
 | 
						|
         IF( D( I ).EQ.ZERO )
 | 
						|
     $      RETURN
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      AINVNM = ZERO
 | 
						|
      IF( ONENRM ) THEN
 | 
						|
         KASE1 = 1
 | 
						|
      ELSE
 | 
						|
         KASE1 = 2
 | 
						|
      END IF
 | 
						|
      KASE = 0
 | 
						|
   20 CONTINUE
 | 
						|
      CALL SLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
 | 
						|
      IF( KASE.NE.0 ) THEN
 | 
						|
         IF( KASE.EQ.KASE1 ) THEN
 | 
						|
*
 | 
						|
*           Multiply by inv(U)*inv(L).
 | 
						|
*
 | 
						|
            CALL SGTTRS( 'No transpose', N, 1, DL, D, DU, DU2, IPIV,
 | 
						|
     $                   WORK, N, INFO )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Multiply by inv(L**T)*inv(U**T).
 | 
						|
*
 | 
						|
            CALL SGTTRS( 'Transpose', N, 1, DL, D, DU, DU2, IPIV, WORK,
 | 
						|
     $                   N, INFO )
 | 
						|
         END IF
 | 
						|
         GO TO 20
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM.NE.ZERO )
 | 
						|
     $   RCOND = ( ONE / AINVNM ) / ANORM
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SGTCON
 | 
						|
*
 | 
						|
      END
 |