295 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			295 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DLAED9 used by sstedc. Finds the roots of the secular equation and updates the eigenvectors. Used when the original matrix is dense.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DLAED9 + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed9.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed9.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed9.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
 | 
						|
*                          S, LDS, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
 | 
						|
*       DOUBLE PRECISION   RHO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
 | 
						|
*      $                   W( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DLAED9 finds the roots of the secular equation, as defined by the
 | 
						|
*> values in D, Z, and RHO, between KSTART and KSTOP.  It makes the
 | 
						|
*> appropriate calls to DLAED4 and then stores the new matrix of
 | 
						|
*> eigenvectors for use in calculating the next level of Z vectors.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>          The number of terms in the rational function to be solved by
 | 
						|
*>          DLAED4.  K >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KSTART
 | 
						|
*> \verbatim
 | 
						|
*>          KSTART is INTEGER
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KSTOP
 | 
						|
*> \verbatim
 | 
						|
*>          KSTOP is INTEGER
 | 
						|
*>          The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP
 | 
						|
*>          are to be computed.  1 <= KSTART <= KSTOP <= K.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns in the Q matrix.
 | 
						|
*>          N >= K (delation may result in N > K).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is DOUBLE PRECISION array, dimension (N)
 | 
						|
*>          D(I) contains the updated eigenvalues
 | 
						|
*>          for KSTART <= I <= KSTOP.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q.  LDQ >= max( 1, N ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RHO
 | 
						|
*> \verbatim
 | 
						|
*>          RHO is DOUBLE PRECISION
 | 
						|
*>          The value of the parameter in the rank one update equation.
 | 
						|
*>          RHO >= 0 required.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] DLAMDA
 | 
						|
*> \verbatim
 | 
						|
*>          DLAMDA is DOUBLE PRECISION array, dimension (K)
 | 
						|
*>          The first K elements of this array contain the old roots
 | 
						|
*>          of the deflated updating problem.  These are the poles
 | 
						|
*>          of the secular equation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is DOUBLE PRECISION array, dimension (K)
 | 
						|
*>          The first K elements of this array contain the components
 | 
						|
*>          of the deflation-adjusted updating vector.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] S
 | 
						|
*> \verbatim
 | 
						|
*>          S is DOUBLE PRECISION array, dimension (LDS, K)
 | 
						|
*>          Will contain the eigenvectors of the repaired matrix which
 | 
						|
*>          will be stored for subsequent Z vector calculation and
 | 
						|
*>          multiplied by the previously accumulated eigenvectors
 | 
						|
*>          to update the system.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDS
 | 
						|
*> \verbatim
 | 
						|
*>          LDS is INTEGER
 | 
						|
*>          The leading dimension of S.  LDS >= max( 1, K ).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit.
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*>          > 0:  if INFO = 1, an eigenvalue did not converge
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup auxOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*> Jeff Rutter, Computer Science Division, University of California
 | 
						|
*> at Berkeley, USA
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DLAED9( K, KSTART, KSTOP, N, D, Q, LDQ, RHO, DLAMDA, W,
 | 
						|
     $                   S, LDS, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, K, KSTART, KSTOP, LDQ, LDS, N
 | 
						|
      DOUBLE PRECISION   RHO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), S( LDS, * ),
 | 
						|
     $                   W( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J
 | 
						|
      DOUBLE PRECISION   TEMP
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMC3, DNRM2
 | 
						|
      EXTERNAL           DLAMC3, DNRM2
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DCOPY, DLAED4, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, SIGN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      IF( K.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( KSTART.LT.1 .OR. KSTART.GT.MAX( 1, K ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( MAX( 1, KSTOP ).LT.KSTART .OR. KSTOP.GT.MAX( 1, K ) )
 | 
						|
     $          THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.K ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDQ.LT.MAX( 1, K ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      ELSE IF( LDS.LT.MAX( 1, K ) ) THEN
 | 
						|
         INFO = -12
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DLAED9', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( K.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can
 | 
						|
*     be computed with high relative accuracy (barring over/underflow).
 | 
						|
*     This is a problem on machines without a guard digit in
 | 
						|
*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
 | 
						|
*     The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I),
 | 
						|
*     which on any of these machines zeros out the bottommost
 | 
						|
*     bit of DLAMDA(I) if it is 1; this makes the subsequent
 | 
						|
*     subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation
 | 
						|
*     occurs. On binary machines with a guard digit (almost all
 | 
						|
*     machines) it does not change DLAMDA(I) at all. On hexadecimal
 | 
						|
*     and decimal machines with a guard digit, it slightly
 | 
						|
*     changes the bottommost bits of DLAMDA(I). It does not account
 | 
						|
*     for hexadecimal or decimal machines without guard digits
 | 
						|
*     (we know of none). We use a subroutine call to compute
 | 
						|
*     2*DLAMBDA(I) to prevent optimizing compilers from eliminating
 | 
						|
*     this code.
 | 
						|
*
 | 
						|
      DO 10 I = 1, N
 | 
						|
         DLAMDA( I ) = DLAMC3( DLAMDA( I ), DLAMDA( I ) ) - DLAMDA( I )
 | 
						|
   10 CONTINUE
 | 
						|
*
 | 
						|
      DO 20 J = KSTART, KSTOP
 | 
						|
         CALL DLAED4( K, J, DLAMDA, W, Q( 1, J ), RHO, D( J ), INFO )
 | 
						|
*
 | 
						|
*        If the zero finder fails, the computation is terminated.
 | 
						|
*
 | 
						|
         IF( INFO.NE.0 )
 | 
						|
     $      GO TO 120
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      IF( K.EQ.1 .OR. K.EQ.2 ) THEN
 | 
						|
         DO 40 I = 1, K
 | 
						|
            DO 30 J = 1, K
 | 
						|
               S( J, I ) = Q( J, I )
 | 
						|
   30       CONTINUE
 | 
						|
   40    CONTINUE
 | 
						|
         GO TO 120
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute updated W.
 | 
						|
*
 | 
						|
      CALL DCOPY( K, W, 1, S, 1 )
 | 
						|
*
 | 
						|
*     Initialize W(I) = Q(I,I)
 | 
						|
*
 | 
						|
      CALL DCOPY( K, Q, LDQ+1, W, 1 )
 | 
						|
      DO 70 J = 1, K
 | 
						|
         DO 50 I = 1, J - 1
 | 
						|
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
 | 
						|
   50    CONTINUE
 | 
						|
         DO 60 I = J + 1, K
 | 
						|
            W( I ) = W( I )*( Q( I, J ) / ( DLAMDA( I )-DLAMDA( J ) ) )
 | 
						|
   60    CONTINUE
 | 
						|
   70 CONTINUE
 | 
						|
      DO 80 I = 1, K
 | 
						|
         W( I ) = SIGN( SQRT( -W( I ) ), S( I, 1 ) )
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
*     Compute eigenvectors of the modified rank-1 modification.
 | 
						|
*
 | 
						|
      DO 110 J = 1, K
 | 
						|
         DO 90 I = 1, K
 | 
						|
            Q( I, J ) = W( I ) / Q( I, J )
 | 
						|
   90    CONTINUE
 | 
						|
         TEMP = DNRM2( K, Q( 1, J ), 1 )
 | 
						|
         DO 100 I = 1, K
 | 
						|
            S( I, J ) = Q( I, J ) / TEMP
 | 
						|
  100    CONTINUE
 | 
						|
  110 CONTINUE
 | 
						|
*
 | 
						|
  120 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DLAED9
 | 
						|
*
 | 
						|
      END
 |