170 lines
6.6 KiB
C
170 lines
6.6 KiB
C
/***************************************************************************
|
|
Copyright (c) 2022, The OpenBLAS Project
|
|
All rights reserved.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in
|
|
the documentation and/or other materials provided with the
|
|
distribution.
|
|
3. Neither the name of the OpenBLAS project nor the names of
|
|
its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*****************************************************************************/
|
|
|
|
#include "common.h"
|
|
|
|
#if !defined(DOUBLE)
|
|
#define VSETVL(n) __riscv_vsetvl_e32m4(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e32m4()
|
|
#define VSETVL_MAX_M1 __riscv_vsetvlmax_e32m1()
|
|
#define FLOAT_V_T vfloat32m4_t
|
|
#define FLOAT_V_T_M1 vfloat32m1_t
|
|
#define VLSEG_FLOAT __riscv_vlseg2e32_v_f32m4
|
|
#define VLSSEG_FLOAT __riscv_vlsseg2e32_v_f32m4
|
|
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1
|
|
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f32m4_tu
|
|
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4
|
|
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1
|
|
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4
|
|
#define VFMSACVV_FLOAT __riscv_vfmsac_vv_f32m4
|
|
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f32m4_tu
|
|
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f32m1_f32
|
|
#else
|
|
#define VSETVL(n) __riscv_vsetvl_e64m4(n)
|
|
#define VSETVL_MAX __riscv_vsetvlmax_e64m4()
|
|
#define VSETVL_MAX_M1 __riscv_vsetvlmax_e64m1()
|
|
#define FLOAT_V_T vfloat64m4_t
|
|
#define FLOAT_V_T_M1 vfloat64m1_t
|
|
#define VLSEG_FLOAT __riscv_vlseg2e64_v_f64m4
|
|
#define VLSSEG_FLOAT __riscv_vlsseg2e64_v_f64m4
|
|
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1
|
|
#define VFMACCVV_FLOAT_TU __riscv_vfmacc_vv_f64m4_tu
|
|
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4
|
|
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1
|
|
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4
|
|
#define VFMSACVV_FLOAT __riscv_vfmsac_vv_f64m4
|
|
#define VFNMSACVV_FLOAT_TU __riscv_vfnmsac_vv_f64m4_tu
|
|
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f64m1_f64
|
|
#endif
|
|
|
|
OPENBLAS_COMPLEX_FLOAT CNAME(BLASLONG n, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y)
|
|
{
|
|
OPENBLAS_COMPLEX_FLOAT result;
|
|
CREAL(result) = 0.0;
|
|
CIMAG(result) = 0.0;
|
|
|
|
if ( n <= 0 ) return(result);
|
|
|
|
FLOAT_V_T vr0, vr1, vx0, vx1, vy0, vy1;
|
|
FLOAT_V_T_M1 v_res, v_z0;
|
|
size_t vlmax_m1 = VSETVL_MAX_M1;
|
|
v_z0 = VFMVVF_FLOAT_M1(0, vlmax_m1);
|
|
|
|
size_t vlmax = VSETVL_MAX;
|
|
vr0 = VFMVVF_FLOAT(0, vlmax);
|
|
vr1 = VFMVVF_FLOAT(0, vlmax);
|
|
|
|
if(inc_x == 1 && inc_y == 1) {
|
|
|
|
for (size_t vl; n > 0; n -= vl, x += vl*2, y += vl*2) {
|
|
vl = VSETVL(n);
|
|
|
|
VLSEG_FLOAT(&vx0, &vx1, x, vl);
|
|
VLSEG_FLOAT(&vy0, &vy1, y, vl);
|
|
|
|
vr0 = VFMACCVV_FLOAT_TU(vr0, vx0, vy0, vl);
|
|
vr1 = VFMACCVV_FLOAT_TU(vr1, vx0, vy1, vl);
|
|
#if !defined(CONJ)
|
|
vr0 = VFNMSACVV_FLOAT_TU(vr0, vx1, vy1, vl);
|
|
vr1 = VFMACCVV_FLOAT_TU(vr1, vx1, vy0, vl);
|
|
#else
|
|
vr0 = VFMACCVV_FLOAT_TU(vr0, vx1, vy1, vl);
|
|
vr1 = VFNMSACVV_FLOAT_TU(vr1, vx1, vy0, vl);
|
|
#endif
|
|
}
|
|
|
|
} else if (inc_x == 1){
|
|
|
|
BLASLONG stride_y = inc_y * 2 * sizeof(FLOAT);
|
|
|
|
for (size_t vl; n > 0; n -= vl, x += vl*2, y += vl*inc_y*2) {
|
|
vl = VSETVL(n);
|
|
|
|
VLSEG_FLOAT(&vx0, &vx1, x, vl);
|
|
VLSSEG_FLOAT(&vy0, &vy1, y, stride_y, vl);
|
|
|
|
vr0 = VFMACCVV_FLOAT_TU(vr0, vx0, vy0, vl);
|
|
vr1 = VFMACCVV_FLOAT_TU(vr1, vx0, vy1, vl);
|
|
#if !defined(CONJ)
|
|
vr0 = VFNMSACVV_FLOAT_TU(vr0, vx1, vy1, vl);
|
|
vr1 = VFMACCVV_FLOAT_TU(vr1, vx1, vy0, vl);
|
|
#else
|
|
vr0 = VFMACCVV_FLOAT_TU(vr0, vx1, vy1, vl);
|
|
vr1 = VFNMSACVV_FLOAT_TU(vr1, vx1, vy0, vl);
|
|
#endif
|
|
}
|
|
} else if (inc_y == 1){
|
|
|
|
BLASLONG stride_x = inc_x * 2 * sizeof(FLOAT);
|
|
|
|
for (size_t vl; n > 0; n -= vl, x += vl*inc_x*2, y += vl*2) {
|
|
vl = VSETVL(n);
|
|
|
|
VLSSEG_FLOAT(&vx0, &vx1, x, stride_x, vl);
|
|
VLSEG_FLOAT(&vy0, &vy1, y, vl);
|
|
|
|
vr0 = VFMACCVV_FLOAT_TU(vr0, vx0, vy0, vl);
|
|
vr1 = VFMACCVV_FLOAT_TU(vr1, vx0, vy1, vl);
|
|
#if !defined(CONJ)
|
|
vr0 = VFNMSACVV_FLOAT_TU(vr0, vx1, vy1, vl);
|
|
vr1 = VFMACCVV_FLOAT_TU(vr1, vx1, vy0, vl);
|
|
#else
|
|
vr0 = VFMACCVV_FLOAT_TU(vr0, vx1, vy1, vl);
|
|
vr1 = VFNMSACVV_FLOAT_TU(vr1, vx1, vy0, vl);
|
|
#endif
|
|
}
|
|
}else {
|
|
|
|
BLASLONG stride_x = inc_x * 2 * sizeof(FLOAT);
|
|
BLASLONG stride_y = inc_y * 2 * sizeof(FLOAT);
|
|
|
|
for (size_t vl; n > 0; n -= vl, x += vl*inc_x*2, y += vl*inc_y*2) {
|
|
vl = VSETVL(n);
|
|
|
|
VLSSEG_FLOAT(&vx0, &vx1, x, stride_x, vl);
|
|
VLSSEG_FLOAT(&vy0, &vy1, y, stride_y, vl);
|
|
|
|
vr0 = VFMACCVV_FLOAT_TU(vr0, vx0, vy0, vl);
|
|
vr1 = VFMACCVV_FLOAT_TU(vr1, vx0, vy1, vl);
|
|
#if !defined(CONJ)
|
|
vr0 = VFNMSACVV_FLOAT_TU(vr0, vx1, vy1, vl);
|
|
vr1 = VFMACCVV_FLOAT_TU(vr1, vx1, vy0, vl);
|
|
#else
|
|
vr0 = VFMACCVV_FLOAT_TU(vr0, vx1, vy1, vl);
|
|
vr1 = VFNMSACVV_FLOAT_TU(vr1, vx1, vy0, vl);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
v_res = VFREDSUM_FLOAT(vr0, v_z0, vlmax);
|
|
CREAL(result) = VFMVFS_FLOAT_M1(v_res);
|
|
v_res = VFREDSUM_FLOAT(vr1, v_z0, vlmax);
|
|
CIMAG(result) = VFMVFS_FLOAT_M1(v_res);
|
|
|
|
return(result);
|
|
}
|