886 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			886 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
| /*********************************************************************/
 | |
| /* Copyright 2009, 2010 The University of Texas at Austin.           */
 | |
| /* All rights reserved.                                              */
 | |
| /*                                                                   */
 | |
| /* Redistribution and use in source and binary forms, with or        */
 | |
| /* without modification, are permitted provided that the following   */
 | |
| /* conditions are met:                                               */
 | |
| /*                                                                   */
 | |
| /*   1. Redistributions of source code must retain the above         */
 | |
| /*      copyright notice, this list of conditions and the following  */
 | |
| /*      disclaimer.                                                  */
 | |
| /*                                                                   */
 | |
| /*   2. Redistributions in binary form must reproduce the above      */
 | |
| /*      copyright notice, this list of conditions and the following  */
 | |
| /*      disclaimer in the documentation and/or other materials       */
 | |
| /*      provided with the distribution.                              */
 | |
| /*                                                                   */
 | |
| /*    THIS  SOFTWARE IS PROVIDED  BY THE  UNIVERSITY OF  TEXAS AT    */
 | |
| /*    AUSTIN  ``AS IS''  AND ANY  EXPRESS OR  IMPLIED WARRANTIES,    */
 | |
| /*    INCLUDING, BUT  NOT LIMITED  TO, THE IMPLIED  WARRANTIES OF    */
 | |
| /*    MERCHANTABILITY  AND FITNESS FOR  A PARTICULAR  PURPOSE ARE    */
 | |
| /*    DISCLAIMED.  IN  NO EVENT SHALL THE UNIVERSITY  OF TEXAS AT    */
 | |
| /*    AUSTIN OR CONTRIBUTORS BE  LIABLE FOR ANY DIRECT, INDIRECT,    */
 | |
| /*    INCIDENTAL,  SPECIAL, EXEMPLARY,  OR  CONSEQUENTIAL DAMAGES    */
 | |
| /*    (INCLUDING, BUT  NOT LIMITED TO,  PROCUREMENT OF SUBSTITUTE    */
 | |
| /*    GOODS  OR  SERVICES; LOSS  OF  USE,  DATA,  OR PROFITS;  OR    */
 | |
| /*    BUSINESS INTERRUPTION) HOWEVER CAUSED  AND ON ANY THEORY OF    */
 | |
| /*    LIABILITY, WHETHER  IN CONTRACT, STRICT  LIABILITY, OR TORT    */
 | |
| /*    (INCLUDING NEGLIGENCE OR OTHERWISE)  ARISING IN ANY WAY OUT    */
 | |
| /*    OF  THE  USE OF  THIS  SOFTWARE,  EVEN  IF ADVISED  OF  THE    */
 | |
| /*    POSSIBILITY OF SUCH DAMAGE.                                    */
 | |
| /*                                                                   */
 | |
| /* The views and conclusions contained in the software and           */
 | |
| /* documentation are those of the authors and should not be          */
 | |
| /* interpreted as representing official policies, either expressed   */
 | |
| /* or implied, of The University of Texas at Austin.                 */
 | |
| /*********************************************************************/
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include "common.h"
 | |
| 
 | |
| static FLOAT dm1 = -1.;
 | |
| 
 | |
| double sqrt(double);
 | |
| 
 | |
| //In this case, the recursive getrf_parallel may overflow the stack.
 | |
| //Instead, use malloc to alloc job_t.
 | |
| #if MAX_CPU_NUMBER > GETRF_MEM_ALLOC_THRESHOLD
 | |
| #define USE_ALLOC_HEAP
 | |
| #endif
 | |
| 
 | |
| #ifndef CACHE_LINE_SIZE
 | |
| #define CACHE_LINE_SIZE 8
 | |
| #endif
 | |
| 
 | |
| #ifndef DIVIDE_RATE
 | |
| #define DIVIDE_RATE 2
 | |
| #endif
 | |
| 
 | |
| #define GEMM_PQ  MAX(GEMM_P, GEMM_Q)
 | |
| #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
 | |
| 
 | |
| #ifndef GETRF_FACTOR
 | |
| #define GETRF_FACTOR 0.75
 | |
| #endif
 | |
| 
 | |
| #undef  GETRF_FACTOR
 | |
| #define GETRF_FACTOR 1.00
 | |
| 
 | |
| static __inline BLASLONG FORMULA1(BLASLONG M, BLASLONG N, BLASLONG IS, BLASLONG BK, BLASLONG T) {
 | |
| 
 | |
|   double m = (double)(M - IS - BK);
 | |
|   double n = (double)(N - IS - BK);
 | |
|   double b = (double)BK;
 | |
|   double a = (double)T;
 | |
| 
 | |
|   return (BLASLONG)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
 | |
| 
 | |
| }
 | |
| 
 | |
| #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
 | |
| 
 | |
| 
 | |
| static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
 | |
| 
 | |
|   BLASLONG is, min_i;
 | |
|   BLASLONG js, min_j;
 | |
|   BLASLONG jjs, min_jj;
 | |
| 
 | |
|   BLASLONG m = args -> m;
 | |
|   BLASLONG n = args -> n;
 | |
|   BLASLONG k = args -> k;
 | |
| 
 | |
|   BLASLONG lda = args -> lda;
 | |
|   BLASLONG off = args -> ldb;
 | |
| 
 | |
|   FLOAT *b = (FLOAT *)args -> b + (k          ) * COMPSIZE;
 | |
|   FLOAT *c = (FLOAT *)args -> b + (    k * lda) * COMPSIZE;
 | |
|   FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
 | |
|   FLOAT *sbb = sb;
 | |
| 
 | |
|   volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
 | |
| 
 | |
|   blasint *ipiv = (blasint *)args -> c;
 | |
| 
 | |
|   if (range_n) {
 | |
|     n      = range_n[1] - range_n[0];
 | |
|     c     += range_n[0] * lda * COMPSIZE;
 | |
|     d     += range_n[0] * lda * COMPSIZE;
 | |
|   }
 | |
| 
 | |
|   if (args -> a == NULL) {
 | |
|     TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
 | |
|     sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
 | |
|   } else {
 | |
|     sb  = (FLOAT *)args -> a;
 | |
|   }
 | |
| 
 | |
|   for (js = 0; js < n; js += REAL_GEMM_R) {
 | |
|     min_j = n - js;
 | |
|     if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
 | |
| 
 | |
|     for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
 | |
|       min_jj = js + min_j - jjs;
 | |
|       if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
 | |
| 
 | |
|       if (0 && GEMM_UNROLL_N <= 8) {
 | |
| 
 | |
| 	LASWP_NCOPY(min_jj, off + 1, off + k,
 | |
| 		    c + (- off + jjs * lda) * COMPSIZE, lda,
 | |
| 		    ipiv, sbb + k * (jjs - js) * COMPSIZE);
 | |
| 
 | |
|       } else {
 | |
| 
 | |
| 	LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
 | |
| #ifdef COMPLEX
 | |
| 		   ZERO,
 | |
| #endif
 | |
| 		   c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
 | |
| 
 | |
| 	GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
 | |
| 
 | |
|       }
 | |
| 
 | |
|       for (is = 0; is < k; is += GEMM_P) {
 | |
| 	min_i = k - is;
 | |
| 	if (min_i > GEMM_P) min_i = GEMM_P;
 | |
| 
 | |
| 	TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
 | |
| #ifdef COMPLEX
 | |
| 		       ZERO,
 | |
| #endif
 | |
| 		       sb  + k * is * COMPSIZE,
 | |
| 		       sbb + (jjs - js) * k * COMPSIZE,
 | |
| 		       c   + (is + jjs * lda) * COMPSIZE, lda, is);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0;
 | |
| 
 | |
|     for (is = 0; is < m; is += GEMM_P){
 | |
|       min_i = m - is;
 | |
|       if (min_i > GEMM_P) min_i = GEMM_P;
 | |
| 
 | |
|       GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
 | |
| 
 | |
|       GEMM_KERNEL_N(min_i, min_j, k, dm1,
 | |
| #ifdef COMPLEX
 | |
| 		    ZERO,
 | |
| #endif
 | |
| 		    sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Non blocking implementation */
 | |
| 
 | |
| typedef struct {
 | |
|   volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
 | |
| } job_t;
 | |
| 
 | |
| #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | |
| #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
 | |
| 
 | |
| #ifndef COMPLEX
 | |
| #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
 | |
| 	GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
 | |
| #else
 | |
| #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
 | |
| 	GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
 | |
| #endif
 | |
| 
 | |
| static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
 | |
| 
 | |
|   job_t *job = (job_t *)args -> common;
 | |
| 
 | |
|   BLASLONG xxx, bufferside;
 | |
| 
 | |
|   FLOAT *buffer[DIVIDE_RATE];
 | |
| 
 | |
|   BLASLONG jjs, min_jj, div_n;
 | |
| 
 | |
|   BLASLONG i, current;
 | |
|   BLASLONG is, min_i;
 | |
| 
 | |
|   BLASLONG m, n_from, n_to;
 | |
|   BLASLONG k = args -> k;
 | |
| 
 | |
|   BLASLONG lda = args -> lda;
 | |
|   BLASLONG off = args -> ldb;
 | |
| 
 | |
|   FLOAT *a = (FLOAT *)args -> b + (k          ) * COMPSIZE;
 | |
|   FLOAT *b = (FLOAT *)args -> b + (    k * lda) * COMPSIZE;
 | |
|   FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
 | |
|   FLOAT *sbb= sb;
 | |
| 
 | |
|   blasint *ipiv = (blasint *)args -> c;
 | |
| 
 | |
|   volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
 | |
| 
 | |
|   if (args -> a == NULL) {
 | |
|     TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
 | |
|     sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
 | |
|   } else {
 | |
|     sb  = (FLOAT *)args -> a;
 | |
|   }
 | |
| 
 | |
|   m      = range_m[1] - range_m[0];
 | |
|   n_from = range_n[mypos + 0];
 | |
|   n_to   = range_n[mypos + 1];
 | |
| 
 | |
|   a     += range_m[0] * COMPSIZE;
 | |
|   c     += range_m[0] * COMPSIZE;
 | |
| 
 | |
|   div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
 | |
| 
 | |
|   buffer[0] = sbb;
 | |
| 
 | |
| 
 | |
|   for (i = 1; i < DIVIDE_RATE; i++) {
 | |
|     buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1)) * COMPSIZE;
 | |
|   }
 | |
| 
 | |
|   for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
 | |
| 
 | |
|     for (i = 0; i < args -> nthreads; i++)
 | |
|       while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
 | |
| 
 | |
|     for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
 | |
|       min_jj = MIN(n_to, xxx + div_n) - jjs;
 | |
|       if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
 | |
| 
 | |
|       if (0 && GEMM_UNROLL_N <= 8) {
 | |
| 	printf("helllo\n");
 | |
| 
 | |
| 	LASWP_NCOPY(min_jj, off + 1, off + k,
 | |
| 		    b + (- off + jjs * lda) * COMPSIZE, lda,
 | |
| 		    ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
 | |
| 
 | |
|       } else {
 | |
| 
 | |
| 	LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
 | |
| #ifdef COMPLEX
 | |
| 		   ZERO,
 | |
| #endif
 | |
| 		   b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
 | |
| 
 | |
| 	GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
 | |
| 		     buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
 | |
|       }
 | |
| 
 | |
|       for (is = 0; is < k; is += GEMM_P) {
 | |
| 	min_i = k - is;
 | |
| 	if (min_i > GEMM_P) min_i = GEMM_P;
 | |
| 
 | |
| 	TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
 | |
| #ifdef COMPLEX
 | |
| 		       ZERO,
 | |
| #endif
 | |
| 		       sb + k * is * COMPSIZE,
 | |
| 		       buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
 | |
| 		       b   + (is + jjs * lda) * COMPSIZE, lda, is);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < args -> nthreads; i++)
 | |
|       job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
 | |
| 
 | |
|   }
 | |
| 
 | |
|   flag[mypos * CACHE_LINE_SIZE] = 0;
 | |
| 
 | |
|   if (m == 0) {
 | |
|     for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
 | |
|       job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for(is = 0; is < m; is += min_i){
 | |
|     min_i = m - is;
 | |
|     if (min_i >= GEMM_P * 2) {
 | |
|       min_i = GEMM_P;
 | |
|     } else
 | |
|       if (min_i > GEMM_P) {
 | |
| 	min_i = ((min_i + 1) / 2 + GEMM_UNROLL_M - 1) & ~(GEMM_UNROLL_M - 1);
 | |
|       }
 | |
| 
 | |
|       ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
 | |
| 
 | |
|       current = mypos;
 | |
| 
 | |
|       do {
 | |
| 
 | |
| 	div_n = (range_n[current + 1]  - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
 | |
| 
 | |
| 	for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
 | |
| 
 | |
| 	  if ((current != mypos) && (!is)) {
 | |
| 	    	    while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
 | |
| 	  }
 | |
| 
 | |
| 	  KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
 | |
| 			   sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
 | |
| 			   c, lda, is, xxx);
 | |
| 
 | |
| 	  if (is + min_i >= m) {
 | |
| 	    job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0;
 | |
| 	  }
 | |
| 	}
 | |
| 
 | |
| 	current ++;
 | |
| 	if (current >= args -> nthreads) current = 0;
 | |
| 
 | |
|       } while (current != mypos);
 | |
|   }
 | |
| 
 | |
|   for (i = 0; i < args -> nthreads; i++) {
 | |
|     for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
 | |
|       while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| #if 1
 | |
| 
 | |
| blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
 | |
| 
 | |
|   BLASLONG m, n, mn, lda, offset;
 | |
|   BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
 | |
|   blasint *ipiv, iinfo, info;
 | |
|   int mode;
 | |
|   blas_arg_t newarg;
 | |
| 
 | |
|   FLOAT *a, *sbb;
 | |
|   FLOAT dummyalpha[2] = {ZERO, ZERO};
 | |
| 
 | |
|   blas_queue_t queue[MAX_CPU_NUMBER];
 | |
| 
 | |
|   BLASLONG range_M[MAX_CPU_NUMBER + 1];
 | |
|   BLASLONG range_N[MAX_CPU_NUMBER + 1];
 | |
| 
 | |
| #ifndef USE_ALLOC_HEAP
 | |
|   job_t        job[MAX_CPU_NUMBER];
 | |
| #else
 | |
|   job_t *      job=NULL;
 | |
| #endif
 | |
| 
 | |
|   BLASLONG width, nn, mm;
 | |
|   BLASLONG i, j, k, is, bk;
 | |
| 
 | |
|   BLASLONG num_cpu;
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|   BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE];
 | |
| #else
 | |
|   volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
 | |
| #endif
 | |
| 
 | |
| #ifndef COMPLEX
 | |
| #ifdef XDOUBLE
 | |
|   mode  =  BLAS_XDOUBLE | BLAS_REAL;
 | |
| #elif defined(DOUBLE)
 | |
|   mode  =  BLAS_DOUBLE  | BLAS_REAL;
 | |
| #else
 | |
|   mode  =  BLAS_SINGLE  | BLAS_REAL;
 | |
| #endif
 | |
| #else
 | |
| #ifdef XDOUBLE
 | |
|   mode  =  BLAS_XDOUBLE | BLAS_COMPLEX;
 | |
| #elif defined(DOUBLE)
 | |
|   mode  =  BLAS_DOUBLE  | BLAS_COMPLEX;
 | |
| #else
 | |
|   mode  =  BLAS_SINGLE  | BLAS_COMPLEX;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|   m    = args -> m;
 | |
|   n    = args -> n;
 | |
|   a    = (FLOAT *)args -> a;
 | |
|   lda  = args -> lda;
 | |
|   ipiv = (blasint *)args -> c;
 | |
|   offset = 0;
 | |
| 
 | |
|   if (range_n) {
 | |
|     m     -= range_n[0];
 | |
|     n      = range_n[1] - range_n[0];
 | |
|     offset = range_n[0];
 | |
|     a     += range_n[0] * (lda + 1) * COMPSIZE;
 | |
|   }
 | |
| 
 | |
|   if (m <= 0 || n <= 0) return 0;
 | |
| 
 | |
|   newarg.c   = ipiv;
 | |
|   newarg.lda = lda;
 | |
| 
 | |
|   info = 0;
 | |
| 
 | |
|   mn = MIN(m, n);
 | |
| 
 | |
|   init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
|   if (init_bk > GEMM_Q) init_bk = GEMM_Q;
 | |
| 
 | |
|   if (init_bk <= GEMM_UNROLL_N) {
 | |
|     info = GETF2(args, NULL, range_n, sa, sb, 0);
 | |
|     return info;
 | |
|   }
 | |
| 
 | |
|   next_bk = init_bk;
 | |
| 
 | |
|   bk = mn;
 | |
|   if (bk > next_bk) bk = next_bk;
 | |
| 
 | |
|   range_n_new[0] = offset;
 | |
|   range_n_new[1] = offset + bk;
 | |
| 
 | |
|   iinfo   = CNAME(args, NULL, range_n_new, sa, sb, 0);
 | |
| 
 | |
|   if (iinfo && !info) info = iinfo;
 | |
| 
 | |
| #ifdef USE_ALLOC_HEAP
 | |
|   job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
 | |
|   if(job==NULL){
 | |
|     fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
 | |
|     exit(1);
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   newarg.common   = (void *)job;
 | |
| 
 | |
|   TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
 | |
| 
 | |
|   sbb = (FLOAT *)((((BLASULONG)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
 | |
| 
 | |
|   is = 0;
 | |
|   num_cpu = 0;
 | |
| 
 | |
|   while (is < mn) {
 | |
| 
 | |
|     width  = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
|     if (width > mn - is - bk) width = mn - is - bk;
 | |
| 
 | |
|     if (width < bk) {
 | |
|       next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1);
 | |
| 
 | |
|       if (next_bk > bk) next_bk = bk;
 | |
| 
 | |
|       width = next_bk;
 | |
|       if (width > mn - is - bk) width = mn - is - bk;
 | |
|     }
 | |
| 
 | |
|     if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]);
 | |
| 
 | |
|     mm = m - bk - is;
 | |
|     nn = n - bk - is;
 | |
| 
 | |
|     newarg.a   = sb;
 | |
|     newarg.b   = a + (is + is * lda) * COMPSIZE;
 | |
|     newarg.d   = (void *)flag;
 | |
|     newarg.m   = mm;
 | |
|     newarg.n   = nn;
 | |
|     newarg.k   = bk;
 | |
|     newarg.ldb = is + offset;
 | |
| 
 | |
|     nn -= width;
 | |
| 
 | |
|     range_n_mine[0] = 0;
 | |
|     range_n_mine[1] = width;
 | |
| 
 | |
|     range_N[0] = width;
 | |
|     range_M[0] = 0;
 | |
| 
 | |
|     num_cpu  = 0;
 | |
| 
 | |
|     while (nn > 0){
 | |
| 
 | |
|       if (mm >= nn) {
 | |
| 
 | |
| 	width  = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
 | |
| 	if (nn < width) width = nn;
 | |
| 	nn -= width;
 | |
| 	range_N[num_cpu + 1] = range_N[num_cpu] + width;
 | |
| 
 | |
| 	width  = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
 | |
| 	if (mm < width) width = mm;
 | |
| 	if (nn <=    0) width = mm;
 | |
| 	mm -= width;
 | |
| 	range_M[num_cpu + 1] = range_M[num_cpu] + width;
 | |
| 
 | |
|       } else {
 | |
| 
 | |
| 	width  = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
 | |
| 	if (mm < width) width = mm;
 | |
| 	mm -= width;
 | |
| 	range_M[num_cpu + 1] = range_M[num_cpu] + width;
 | |
| 
 | |
| 	width  = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
 | |
| 	if (nn < width) width = nn;
 | |
| 	if (mm <=    0) width = nn;
 | |
| 	nn -= width;
 | |
| 	range_N[num_cpu + 1] = range_N[num_cpu] + width;
 | |
| 
 | |
|       }
 | |
| 
 | |
|       queue[num_cpu].mode    = mode;
 | |
|       queue[num_cpu].routine = inner_advanced_thread;
 | |
|       queue[num_cpu].args    = &newarg;
 | |
|       queue[num_cpu].range_m = &range_M[num_cpu];
 | |
|       queue[num_cpu].range_n = &range_N[0];
 | |
|       queue[num_cpu].sa      = NULL;
 | |
|       queue[num_cpu].sb      = NULL;
 | |
|       queue[num_cpu].next    = &queue[num_cpu + 1];
 | |
|       flag[num_cpu * CACHE_LINE_SIZE] = 1;
 | |
| 
 | |
|       num_cpu ++;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     newarg.nthreads = num_cpu;
 | |
| 
 | |
|     if (num_cpu > 0) {
 | |
|       for (j = 0; j < num_cpu; j++) {
 | |
| 	for (i = 0; i < num_cpu; i++) {
 | |
| 	  for (k = 0; k < DIVIDE_RATE; k++) {
 | |
| 	    job[j].working[i][CACHE_LINE_SIZE * k] = 0;
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     is += bk;
 | |
| 
 | |
|     bk = mn - is;
 | |
|     if (bk > next_bk) bk = next_bk;
 | |
| 
 | |
|     range_n_new[0] = offset + is;
 | |
|     range_n_new[1] = offset + is + bk;
 | |
| 
 | |
|     if (num_cpu > 0) {
 | |
| 
 | |
|       queue[num_cpu - 1].next = NULL;
 | |
| 
 | |
|       exec_blas_async(0, &queue[0]);
 | |
| 
 | |
|       inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
 | |
| 
 | |
|       iinfo   = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
 | |
| 
 | |
|       if (iinfo && !info) info = iinfo + is;
 | |
| 
 | |
|       for (i = 0; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
 | |
| 
 | |
|       TRSM_ILTCOPY(bk, bk, a + (is +  is * lda) * COMPSIZE, lda, 0, sb);
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|       inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
 | |
| 
 | |
|       iinfo   = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
 | |
| 
 | |
|       if (iinfo && !info) info = iinfo + is;
 | |
| 
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   next_bk = init_bk;
 | |
|   is = 0;
 | |
| 
 | |
|   while (is < mn) {
 | |
| 
 | |
|     bk = mn - is;
 | |
|     if (bk > next_bk) bk = next_bk;
 | |
| 
 | |
|     width  = (FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
|     if (width > mn - is - bk) width = mn - is - bk;
 | |
| 
 | |
|     if (width < bk) {
 | |
|       next_bk = (FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N) & ~(GEMM_UNROLL_N - 1);
 | |
|       if (next_bk > bk) next_bk = bk;
 | |
|     }
 | |
| 
 | |
|     blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
 | |
| 		       a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
 | |
| 		       ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
 | |
| 
 | |
|     is += bk;
 | |
|   }
 | |
| 
 | |
| #ifdef USE_ALLOC_HEAP
 | |
|   free(job);
 | |
| #endif
 | |
| 
 | |
|   return info;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
 | |
| 
 | |
|   BLASLONG m, n, mn, lda, offset;
 | |
|   BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
 | |
|   blasint *ipiv, iinfo, info;
 | |
|   int mode;
 | |
|   blas_arg_t newarg;
 | |
|   FLOAT *a, *sbb;
 | |
|   FLOAT dummyalpha[2] = {ZERO, ZERO};
 | |
| 
 | |
|   blas_queue_t queue[MAX_CPU_NUMBER];
 | |
|   BLASLONG range[MAX_CPU_NUMBER + 1];
 | |
| 
 | |
|   BLASLONG width, nn, num_cpu;
 | |
| 
 | |
|   volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
 | |
| 
 | |
| #ifndef COMPLEX
 | |
| #ifdef XDOUBLE
 | |
|   mode  =  BLAS_XDOUBLE | BLAS_REAL;
 | |
| #elif defined(DOUBLE)
 | |
|   mode  =  BLAS_DOUBLE  | BLAS_REAL;
 | |
| #else
 | |
|   mode  =  BLAS_SINGLE  | BLAS_REAL;
 | |
| #endif
 | |
| #else
 | |
| #ifdef XDOUBLE
 | |
|   mode  =  BLAS_XDOUBLE | BLAS_COMPLEX;
 | |
| #elif defined(DOUBLE)
 | |
|   mode  =  BLAS_DOUBLE  | BLAS_COMPLEX;
 | |
| #else
 | |
|   mode  =  BLAS_SINGLE  | BLAS_COMPLEX;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
|   m    = args -> m;
 | |
|   n    = args -> n;
 | |
|   a    = (FLOAT *)args -> a;
 | |
|   lda  = args -> lda;
 | |
|   ipiv = (blasint *)args -> c;
 | |
|   offset = 0;
 | |
| 
 | |
|   if (range_n) {
 | |
|     m     -= range_n[0];
 | |
|     n      = range_n[1] - range_n[0];
 | |
|     offset = range_n[0];
 | |
|     a     += range_n[0] * (lda + 1) * COMPSIZE;
 | |
|   }
 | |
| 
 | |
|   if (m <= 0 || n <= 0) return 0;
 | |
| 
 | |
|   newarg.c   = ipiv;
 | |
|   newarg.lda = lda;
 | |
|   newarg.common = NULL;
 | |
|   newarg.nthreads = args -> nthreads;
 | |
| 
 | |
|   mn = MIN(m, n);
 | |
| 
 | |
|   init_bk = (mn / 2 + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
|   if (init_bk > GEMM_Q) init_bk = GEMM_Q;
 | |
| 
 | |
|   if (init_bk <= GEMM_UNROLL_N) {
 | |
|     info = GETF2(args, NULL, range_n, sa, sb, 0);
 | |
|     return info;
 | |
|   }
 | |
| 
 | |
|   width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
 | |
|   width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
|   if (width > n - init_bk) width = n - init_bk;
 | |
| 
 | |
|   if (width < init_bk) {
 | |
|     BLASLONG temp;
 | |
| 
 | |
|     temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
 | |
|     temp = (temp + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
| 
 | |
|     if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
 | |
|     if (temp < init_bk) init_bk = temp;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   next_bk = init_bk;
 | |
|   bk      = init_bk;
 | |
| 
 | |
|   range_n_new[0] = offset;
 | |
|   range_n_new[1] = offset + bk;
 | |
| 
 | |
|   info   = CNAME(args, NULL, range_n_new, sa, sb, 0);
 | |
| 
 | |
|   TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
 | |
| 
 | |
|   is = 0;
 | |
|   num_cpu = 0;
 | |
| 
 | |
|   sbb = (FLOAT *)((((BLASULONG)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
 | |
| 
 | |
|   while (is < mn) {
 | |
| 
 | |
|     width  = FORMULA1(m, n, is, bk, args -> nthreads);
 | |
|     width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
| 
 | |
|     if (width < bk) {
 | |
| 
 | |
|       next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
 | |
|       next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
| 
 | |
|       if (next_bk > bk) next_bk = bk;
 | |
| #if 0
 | |
|       if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
 | |
| #else
 | |
|       if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
 | |
| #endif
 | |
| 
 | |
|       width = next_bk;
 | |
|     }
 | |
| 
 | |
|     if (width > mn - is - bk) {
 | |
|       next_bk = mn - is - bk;
 | |
|       width   = next_bk;
 | |
|     }
 | |
| 
 | |
|     nn = n - bk - is;
 | |
|     if (width > nn) width = nn;
 | |
| 
 | |
|     if (num_cpu > 1)  exec_blas_async_wait(num_cpu - 1, &queue[1]);
 | |
| 
 | |
|     range[0] = 0;
 | |
|     range[1] = width;
 | |
| 
 | |
|     num_cpu = 1;
 | |
|     nn -= width;
 | |
| 
 | |
|     newarg.a   = sb;
 | |
|     newarg.b   = a + (is + is * lda) * COMPSIZE;
 | |
|     newarg.d   = (void *)flag;
 | |
|     newarg.m   = m - bk - is;
 | |
|     newarg.n   = n - bk - is;
 | |
|     newarg.k   = bk;
 | |
|     newarg.ldb = is + offset;
 | |
| 
 | |
|     while (nn > 0){
 | |
| 
 | |
|       width  = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
 | |
| 
 | |
|       nn -= width;
 | |
|       if (nn < 0) width = width + nn;
 | |
| 
 | |
|       range[num_cpu + 1] = range[num_cpu] + width;
 | |
| 
 | |
|       queue[num_cpu].mode    = mode;
 | |
|       //queue[num_cpu].routine = inner_advanced_thread;
 | |
|       queue[num_cpu].routine = (void *)inner_basic_thread;
 | |
|       queue[num_cpu].args    = &newarg;
 | |
|       queue[num_cpu].range_m = NULL;
 | |
|       queue[num_cpu].range_n = &range[num_cpu];
 | |
|       queue[num_cpu].sa      = NULL;
 | |
|       queue[num_cpu].sb      = NULL;
 | |
|       queue[num_cpu].next    = &queue[num_cpu + 1];
 | |
|       flag[num_cpu * CACHE_LINE_SIZE] = 1;
 | |
| 
 | |
|       num_cpu ++;
 | |
|     }
 | |
| 
 | |
|     queue[num_cpu - 1].next = NULL;
 | |
| 
 | |
|     is += bk;
 | |
| 
 | |
|     bk = n - is;
 | |
|     if (bk > next_bk) bk = next_bk;
 | |
| 
 | |
|     range_n_new[0] = offset + is;
 | |
|     range_n_new[1] = offset + is + bk;
 | |
| 
 | |
|     if (num_cpu > 1) {
 | |
| 
 | |
|       exec_blas_async(1, &queue[1]);
 | |
| 
 | |
| #if 0
 | |
|       inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
 | |
| 
 | |
|       iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
 | |
| #else
 | |
| 
 | |
|       if (range[1] >= bk * 4) {
 | |
| 
 | |
| 	BLASLONG myrange[2];
 | |
| 
 | |
| 	myrange[0] = 0;
 | |
| 	myrange[1] = bk;
 | |
| 
 | |
| 	inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
 | |
| 
 | |
| 	iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
 | |
| 
 | |
| 	myrange[0] = bk;
 | |
| 	myrange[1] = range[1];
 | |
| 
 | |
| 	inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
 | |
| 
 | |
|       } else {
 | |
| 
 | |
| 	inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
 | |
| 
 | |
| 	iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
 | |
|       }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|       for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
 | |
| 
 | |
|       TRSM_ILTCOPY(bk, bk, a + (is +  is * lda) * COMPSIZE, lda, 0, sb);
 | |
| 
 | |
|     } else {
 | |
| 
 | |
|       inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
 | |
| 
 | |
|       iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
 | |
|     }
 | |
| 
 | |
|       if (iinfo && !info) info = iinfo + is;
 | |
| 
 | |
|   }
 | |
| 
 | |
|   next_bk = init_bk;
 | |
|   bk      = init_bk;
 | |
| 
 | |
|   is = 0;
 | |
| 
 | |
|   while (is < mn) {
 | |
| 
 | |
|     bk = mn - is;
 | |
|     if (bk > next_bk) bk = next_bk;
 | |
| 
 | |
|     width  = FORMULA1(m, n, is, bk, args -> nthreads);
 | |
|     width = (width + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
| 
 | |
|     if (width < bk) {
 | |
|       next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
 | |
|       next_bk = (next_bk + GEMM_UNROLL_N - 1) & ~(GEMM_UNROLL_N - 1);
 | |
| 
 | |
|       if (next_bk > bk) next_bk = bk;
 | |
| #if 0
 | |
|       if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
 | |
| #else
 | |
|       if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     if (width > mn - is - bk) {
 | |
|       next_bk = mn - is - bk;
 | |
|       width   = next_bk;
 | |
|     }
 | |
| 
 | |
|     blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
 | |
| 		       a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
 | |
| 		       ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
 | |
| 
 | |
|     is += bk;
 | |
|   }
 | |
| 
 | |
|   return info;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 |