282 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
C> \brief \b ZGETRF VARIANT: iterative version of Sivan Toledo's recursive LU algorithm
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZGETRF( M, N, A, LDA, IPIV, INFO )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LDA, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * )
 | 
						|
*       COMPLEX*16         A( LDA, * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*  Purpose
 | 
						|
*  =======
 | 
						|
*
 | 
						|
C>\details \b Purpose:
 | 
						|
C>\verbatim
 | 
						|
C>
 | 
						|
C> ZGETRF computes an LU factorization of a general M-by-N matrix A
 | 
						|
C> using partial pivoting with row interchanges.
 | 
						|
C>
 | 
						|
C> The factorization has the form
 | 
						|
C>    A = P * L * U
 | 
						|
C> where P is a permutation matrix, L is lower triangular with unit
 | 
						|
C> diagonal elements (lower trapezoidal if m > n), and U is upper
 | 
						|
C> triangular (upper trapezoidal if m < n).
 | 
						|
C>
 | 
						|
C> This code implements an iterative version of Sivan Toledo's recursive
 | 
						|
C> LU algorithm[1].  For square matrices, this iterative versions should
 | 
						|
C> be within a factor of two of the optimum number of memory transfers.
 | 
						|
C>
 | 
						|
C> The pattern is as follows, with the large blocks of U being updated
 | 
						|
C> in one call to DTRSM, and the dotted lines denoting sections that
 | 
						|
C> have had all pending permutations applied:
 | 
						|
C>
 | 
						|
C>  1 2 3 4 5 6 7 8
 | 
						|
C> +-+-+---+-------+------
 | 
						|
C> | |1|   |       |
 | 
						|
C> |.+-+ 2 |       |
 | 
						|
C> | | |   |       |
 | 
						|
C> |.|.+-+-+   4   |
 | 
						|
C> | | | |1|       |
 | 
						|
C> | | |.+-+       |
 | 
						|
C> | | | | |       |
 | 
						|
C> |.|.|.|.+-+-+---+  8
 | 
						|
C> | | | | | |1|   |
 | 
						|
C> | | | | |.+-+ 2 |
 | 
						|
C> | | | | | | |   |
 | 
						|
C> | | | | |.|.+-+-+
 | 
						|
C> | | | | | | | |1|
 | 
						|
C> | | | | | | |.+-+
 | 
						|
C> | | | | | | | | |
 | 
						|
C> |.|.|.|.|.|.|.|.+-----
 | 
						|
C> | | | | | | | | |
 | 
						|
C>
 | 
						|
C> The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in
 | 
						|
C> the binary expansion of the current column.  Each Schur update is
 | 
						|
C> applied as soon as the necessary portion of U is available.
 | 
						|
C>
 | 
						|
C> [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with
 | 
						|
C> Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997),
 | 
						|
C> 1065-1081. http://dx.doi.org/10.1137/S0895479896297744
 | 
						|
C>
 | 
						|
C>\endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
C> \param[in] M
 | 
						|
C> \verbatim
 | 
						|
C>          M is INTEGER
 | 
						|
C>          The number of rows of the matrix A.  M >= 0.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in] N
 | 
						|
C> \verbatim
 | 
						|
C>          N is INTEGER
 | 
						|
C>          The number of columns of the matrix A.  N >= 0.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in,out] A
 | 
						|
C> \verbatim
 | 
						|
C>          A is COMPLEX*16 array, dimension (LDA,N)
 | 
						|
C>          On entry, the M-by-N matrix to be factored.
 | 
						|
C>          On exit, the factors L and U from the factorization
 | 
						|
C>          A = P*L*U; the unit diagonal elements of L are not stored.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[in] LDA
 | 
						|
C> \verbatim
 | 
						|
C>          LDA is INTEGER
 | 
						|
C>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[out] IPIV
 | 
						|
C> \verbatim
 | 
						|
C>          IPIV is INTEGER array, dimension (min(M,N))
 | 
						|
C>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | 
						|
C>          matrix was interchanged with row IPIV(i).
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
C> \param[out] INFO
 | 
						|
C> \verbatim
 | 
						|
C>          INFO is INTEGER
 | 
						|
C>          = 0:  successful exit
 | 
						|
C>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
C>          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
 | 
						|
C>                has been completed, but the factor U is exactly
 | 
						|
C>                singular, and division by zero will occur if it is used
 | 
						|
C>                to solve a system of equations.
 | 
						|
C> \endverbatim
 | 
						|
C>
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
C> \author Univ. of Tennessee 
 | 
						|
C> \author Univ. of California Berkeley 
 | 
						|
C> \author Univ. of Colorado Denver 
 | 
						|
C> \author NAG Ltd. 
 | 
						|
*
 | 
						|
C> \date November 2011
 | 
						|
*
 | 
						|
C> \ingroup variantsGEcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZGETRF( M, N, A, LDA, IPIV, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.X) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2011
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LDA, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * )
 | 
						|
      COMPLEX*16         A( LDA, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE, NEGONE
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ONE = (1.0D+0, 0.0D+0) )
 | 
						|
      PARAMETER          ( NEGONE = (-1.0D+0, 0.0D+0) )
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      DOUBLE PRECISION   SFMIN, PIVMAG
 | 
						|
      COMPLEX*16         TMP
 | 
						|
      INTEGER            I, J, JP, NSTEP, NTOPIV, NPIVED, KAHEAD
 | 
						|
      INTEGER            KSTART, IPIVSTART, JPIVSTART, KCOLS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      INTEGER            IZAMAX
 | 
						|
      LOGICAL            DISNAN
 | 
						|
      EXTERNAL           DLAMCH, IZAMAX, DISNAN
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZTRSM, ZSCAL, XERBLA, ZLASWP
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, IAND, ABS
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -4
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZGETRF', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Compute machine safe minimum
 | 
						|
*
 | 
						|
      SFMIN = DLAMCH( 'S' )
 | 
						|
*
 | 
						|
      NSTEP = MIN( M, N )
 | 
						|
      DO J = 1, NSTEP
 | 
						|
         KAHEAD = IAND( J, -J )
 | 
						|
         KSTART = J + 1 - KAHEAD
 | 
						|
         KCOLS = MIN( KAHEAD, M-J )
 | 
						|
*
 | 
						|
*        Find pivot.
 | 
						|
*
 | 
						|
         JP = J - 1 + IZAMAX( M-J+1, A( J, J ), 1 )
 | 
						|
         IPIV( J ) = JP
 | 
						|
 | 
						|
!        Permute just this column.
 | 
						|
         IF (JP .NE. J) THEN
 | 
						|
            TMP = A( J, J )
 | 
						|
            A( J, J ) = A( JP, J )
 | 
						|
            A( JP, J ) = TMP
 | 
						|
         END IF
 | 
						|
 | 
						|
!        Apply pending permutations to L
 | 
						|
         NTOPIV = 1
 | 
						|
         IPIVSTART = J
 | 
						|
         JPIVSTART = J - NTOPIV
 | 
						|
         DO WHILE ( NTOPIV .LT. KAHEAD )
 | 
						|
            CALL ZLASWP( NTOPIV, A( 1, JPIVSTART ), LDA, IPIVSTART, J,
 | 
						|
     $           IPIV, 1 )
 | 
						|
            IPIVSTART = IPIVSTART - NTOPIV;
 | 
						|
            NTOPIV = NTOPIV * 2;
 | 
						|
            JPIVSTART = JPIVSTART - NTOPIV;
 | 
						|
         END DO
 | 
						|
 | 
						|
!        Permute U block to match L
 | 
						|
         CALL ZLASWP( KCOLS, A( 1,J+1 ), LDA, KSTART, J, IPIV, 1 )
 | 
						|
 | 
						|
!        Factor the current column
 | 
						|
         PIVMAG = ABS( A( J, J ) )
 | 
						|
         IF( PIVMAG.NE.ZERO .AND. .NOT.DISNAN( PIVMAG ) ) THEN
 | 
						|
               IF( PIVMAG .GE. SFMIN ) THEN
 | 
						|
                  CALL ZSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
 | 
						|
               ELSE
 | 
						|
                 DO I = 1, M-J
 | 
						|
                    A( J+I, J ) = A( J+I, J ) / A( J, J )
 | 
						|
                 END DO
 | 
						|
               END IF
 | 
						|
         ELSE IF( PIVMAG .EQ. ZERO .AND. INFO .EQ. 0 ) THEN
 | 
						|
            INFO = J
 | 
						|
         END IF
 | 
						|
 | 
						|
!        Solve for U block.
 | 
						|
         CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit', KAHEAD,
 | 
						|
     $        KCOLS, ONE, A( KSTART, KSTART ), LDA,
 | 
						|
     $        A( KSTART, J+1 ), LDA )
 | 
						|
!        Schur complement.
 | 
						|
         CALL ZGEMM( 'No transpose', 'No transpose', M-J,
 | 
						|
     $        KCOLS, KAHEAD, NEGONE, A( J+1, KSTART ), LDA,
 | 
						|
     $        A( KSTART, J+1 ), LDA, ONE, A( J+1, J+1 ), LDA )
 | 
						|
      END DO
 | 
						|
 | 
						|
!     Handle pivot permutations on the way out of the recursion
 | 
						|
      NPIVED = IAND( NSTEP, -NSTEP )
 | 
						|
      J = NSTEP - NPIVED
 | 
						|
      DO WHILE ( J .GT. 0 )
 | 
						|
         NTOPIV = IAND( J, -J )
 | 
						|
         CALL ZLASWP( NTOPIV, A( 1, J-NTOPIV+1 ), LDA, J+1, NSTEP,
 | 
						|
     $        IPIV, 1 )
 | 
						|
         J = J - NTOPIV
 | 
						|
      END DO
 | 
						|
 | 
						|
!     If short and wide, handle the rest of the columns.
 | 
						|
      IF ( M .LT. N ) THEN
 | 
						|
         CALL ZLASWP( N-M, A( 1, M+KCOLS+1 ), LDA, 1, M, IPIV, 1 )
 | 
						|
         CALL ZTRSM( 'Left', 'Lower', 'No transpose', 'Unit', M,
 | 
						|
     $        N-M, ONE, A, LDA, A( 1,M+KCOLS+1 ), LDA )
 | 
						|
      END IF
 | 
						|
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZGETRF
 | 
						|
*
 | 
						|
      END
 |