368 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			368 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZTGEX2 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgex2.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgex2.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgex2.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | 
						|
*                          LDZ, J1, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       LOGICAL            WANTQ, WANTZ
 | 
						|
*       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
*      $                   Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
 | 
						|
*> in an upper triangular matrix pair (A, B) by an unitary equivalence
 | 
						|
*> transformation.
 | 
						|
*>
 | 
						|
*> (A, B) must be in generalized Schur canonical form, that is, A and
 | 
						|
*> B are both upper triangular.
 | 
						|
*>
 | 
						|
*> Optionally, the matrices Q and Z of generalized Schur vectors are
 | 
						|
*> updated.
 | 
						|
*>
 | 
						|
*>        Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
 | 
						|
*>        Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] WANTQ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTQ is LOGICAL
 | 
						|
*>          .TRUE. : update the left transformation matrix Q;
 | 
						|
*>          .FALSE.: do not update Q.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] WANTZ
 | 
						|
*> \verbatim
 | 
						|
*>          WANTZ is LOGICAL
 | 
						|
*>          .TRUE. : update the right transformation matrix Z;
 | 
						|
*>          .FALSE.: do not update Z.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrices A and B. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimensions (LDA,N)
 | 
						|
*>          On entry, the matrix A in the pair (A, B).
 | 
						|
*>          On exit, the updated matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is COMPLEX*16 array, dimensions (LDB,N)
 | 
						|
*>          On entry, the matrix B in the pair (A, B).
 | 
						|
*>          On exit, the updated matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is COMPLEX*16 array, dimension (LDQ,N)
 | 
						|
*>          If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
 | 
						|
*>          the updated matrix Q.
 | 
						|
*>          Not referenced if WANTQ = .FALSE..
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDQ
 | 
						|
*> \verbatim
 | 
						|
*>          LDQ is INTEGER
 | 
						|
*>          The leading dimension of the array Q. LDQ >= 1;
 | 
						|
*>          If WANTQ = .TRUE., LDQ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is COMPLEX*16 array, dimension (LDZ,N)
 | 
						|
*>          If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
 | 
						|
*>          the updated matrix Z.
 | 
						|
*>          Not referenced if WANTZ = .FALSE..
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z. LDZ >= 1;
 | 
						|
*>          If WANTZ = .TRUE., LDZ >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] J1
 | 
						|
*> \verbatim
 | 
						|
*>          J1 is INTEGER
 | 
						|
*>          The index to the first block (A11, B11).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>           =0:  Successful exit.
 | 
						|
*>           =1:  The transformed matrix pair (A, B) would be too far
 | 
						|
*>                from generalized Schur form; the problem is ill-
 | 
						|
*>                conditioned.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2017
 | 
						|
*
 | 
						|
*> \ingroup complex16GEauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*>  In the current code both weak and strong stability tests are
 | 
						|
*>  performed. The user can omit the strong stability test by changing
 | 
						|
*>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
 | 
						|
*>  details.
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | 
						|
*>     Umea University, S-901 87 Umea, Sweden.
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | 
						|
*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | 
						|
*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | 
						|
*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | 
						|
*> \n
 | 
						|
*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | 
						|
*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | 
						|
*>      Estimation: Theory, Algorithms and Software, Report UMINF-94.04,
 | 
						|
*>      Department of Computing Science, Umea University, S-901 87 Umea,
 | 
						|
*>      Sweden, 1994. Also as LAPACK Working Note 87. To appear in
 | 
						|
*>      Numerical Algorithms, 1996.
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | 
						|
     $                   LDZ, J1, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.1) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2017
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      LOGICAL            WANTQ, WANTZ
 | 
						|
      INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | 
						|
     $                   Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         CZERO, CONE
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
 | 
						|
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
 | 
						|
      DOUBLE PRECISION   TWENTY
 | 
						|
      PARAMETER          ( TWENTY = 2.0D+1 )
 | 
						|
      INTEGER            LDST
 | 
						|
      PARAMETER          ( LDST = 2 )
 | 
						|
      LOGICAL            WANDS
 | 
						|
      PARAMETER          ( WANDS = .TRUE. )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            DTRONG, WEAK
 | 
						|
      INTEGER            I, M
 | 
						|
      DOUBLE PRECISION   CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SS, SUM,
 | 
						|
     $                   THRESH, WS
 | 
						|
      COMPLEX*16         CDUM, F, G, SQ, SZ
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      COMPLEX*16         S( LDST, LDST ), T( LDST, LDST ), WORK( 8 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZLACPY, ZLARTG, ZLASSQ, ZROT
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DCONJG, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( N.LE.1 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      M = LDST
 | 
						|
      WEAK = .FALSE.
 | 
						|
      DTRONG = .FALSE.
 | 
						|
*
 | 
						|
*     Make a local copy of selected block in (A, B)
 | 
						|
*
 | 
						|
      CALL ZLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
 | 
						|
      CALL ZLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
 | 
						|
*
 | 
						|
*     Compute the threshold for testing the acceptance of swapping.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'P' )
 | 
						|
      SMLNUM = DLAMCH( 'S' ) / EPS
 | 
						|
      SCALE = DBLE( CZERO )
 | 
						|
      SUM = DBLE( CONE )
 | 
						|
      CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
 | 
						|
      CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
 | 
						|
      CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
 | 
						|
      SA = SCALE*SQRT( SUM )
 | 
						|
*
 | 
						|
*     THRES has been changed from
 | 
						|
*        THRESH = MAX( TEN*EPS*SA, SMLNUM )
 | 
						|
*     to
 | 
						|
*        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
 | 
						|
*     on 04/01/10.
 | 
						|
*     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
 | 
						|
*     Jim Demmel and Guillaume Revy. See forum post 1783.
 | 
						|
*
 | 
						|
      THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
 | 
						|
*
 | 
						|
*     Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks
 | 
						|
*     using Givens rotations and perform the swap tentatively.
 | 
						|
*
 | 
						|
      F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
 | 
						|
      G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
 | 
						|
      SA = ABS( S( 2, 2 ) )
 | 
						|
      SB = ABS( T( 2, 2 ) )
 | 
						|
      CALL ZLARTG( G, F, CZ, SZ, CDUM )
 | 
						|
      SZ = -SZ
 | 
						|
      CALL ZROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, DCONJG( SZ ) )
 | 
						|
      CALL ZROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, DCONJG( SZ ) )
 | 
						|
      IF( SA.GE.SB ) THEN
 | 
						|
         CALL ZLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM )
 | 
						|
      ELSE
 | 
						|
         CALL ZLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM )
 | 
						|
      END IF
 | 
						|
      CALL ZROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ )
 | 
						|
      CALL ZROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ )
 | 
						|
*
 | 
						|
*     Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T)))
 | 
						|
*
 | 
						|
      WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
 | 
						|
      WEAK = WS.LE.THRESH
 | 
						|
      IF( .NOT.WEAK )
 | 
						|
     $   GO TO 20
 | 
						|
*
 | 
						|
      IF( WANDS ) THEN
 | 
						|
*
 | 
						|
*        Strong stability test:
 | 
						|
*           F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B)))
 | 
						|
*
 | 
						|
         CALL ZLACPY( 'Full', M, M, S, LDST, WORK, M )
 | 
						|
         CALL ZLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M )
 | 
						|
         CALL ZROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -DCONJG( SZ ) )
 | 
						|
         CALL ZROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -DCONJG( SZ ) )
 | 
						|
         CALL ZROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ )
 | 
						|
         CALL ZROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ )
 | 
						|
         DO 10 I = 1, 2
 | 
						|
            WORK( I ) = WORK( I ) - A( J1+I-1, J1 )
 | 
						|
            WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 )
 | 
						|
            WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 )
 | 
						|
            WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 )
 | 
						|
   10    CONTINUE
 | 
						|
         SCALE = DBLE( CZERO )
 | 
						|
         SUM = DBLE( CONE )
 | 
						|
         CALL ZLASSQ( 2*M*M, WORK, 1, SCALE, SUM )
 | 
						|
         SS = SCALE*SQRT( SUM )
 | 
						|
         DTRONG = SS.LE.THRESH
 | 
						|
         IF( .NOT.DTRONG )
 | 
						|
     $      GO TO 20
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If the swap is accepted ("weakly" and "strongly"), apply the
 | 
						|
*     equivalence transformations to the original matrix pair (A,B)
 | 
						|
*
 | 
						|
      CALL ZROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ,
 | 
						|
     $           DCONJG( SZ ) )
 | 
						|
      CALL ZROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ,
 | 
						|
     $           DCONJG( SZ ) )
 | 
						|
      CALL ZROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ )
 | 
						|
      CALL ZROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ )
 | 
						|
*
 | 
						|
*     Set  N1 by N2 (2,1) blocks to 0
 | 
						|
*
 | 
						|
      A( J1+1, J1 ) = CZERO
 | 
						|
      B( J1+1, J1 ) = CZERO
 | 
						|
*
 | 
						|
*     Accumulate transformations into Q and Z if requested.
 | 
						|
*
 | 
						|
      IF( WANTZ )
 | 
						|
     $   CALL ZROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ,
 | 
						|
     $              DCONJG( SZ ) )
 | 
						|
      IF( WANTQ )
 | 
						|
     $   CALL ZROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ,
 | 
						|
     $              DCONJG( SQ ) )
 | 
						|
*
 | 
						|
*     Exit with INFO = 0 if swap was successfully performed.
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     Exit with INFO = 1 if swap was rejected.
 | 
						|
*
 | 
						|
   20 CONTINUE
 | 
						|
      INFO = 1
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZTGEX2
 | 
						|
*
 | 
						|
      END
 |