251 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			251 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLARTG generates a plane rotation with real cosine and complex sine.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLARTG + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlartg.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlartg.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlartg.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLARTG( F, G, CS, SN, R )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       DOUBLE PRECISION   CS
 | 
						|
*       COMPLEX*16         F, G, R, SN
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLARTG generates a plane rotation so that
 | 
						|
*>
 | 
						|
*>    [  CS  SN  ]     [ F ]     [ R ]
 | 
						|
*>    [  __      ]  .  [   ]  =  [   ]   where CS**2 + |SN|**2 = 1.
 | 
						|
*>    [ -SN  CS  ]     [ G ]     [ 0 ]
 | 
						|
*>
 | 
						|
*> This is a faster version of the BLAS1 routine ZROTG, except for
 | 
						|
*> the following differences:
 | 
						|
*>    F and G are unchanged on return.
 | 
						|
*>    If G=0, then CS=1 and SN=0.
 | 
						|
*>    If F=0, then CS=0 and SN is chosen so that R is real.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] F
 | 
						|
*> \verbatim
 | 
						|
*>          F is COMPLEX*16
 | 
						|
*>          The first component of vector to be rotated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] G
 | 
						|
*> \verbatim
 | 
						|
*>          G is COMPLEX*16
 | 
						|
*>          The second component of vector to be rotated.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] CS
 | 
						|
*> \verbatim
 | 
						|
*>          CS is DOUBLE PRECISION
 | 
						|
*>          The cosine of the rotation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] SN
 | 
						|
*> \verbatim
 | 
						|
*>          SN is COMPLEX*16
 | 
						|
*>          The sine of the rotation.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] R
 | 
						|
*> \verbatim
 | 
						|
*>          R is COMPLEX*16
 | 
						|
*>          The nonzero component of the rotated vector.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERauxiliary
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel
 | 
						|
*>
 | 
						|
*>  This version has a few statements commented out for thread safety
 | 
						|
*>  (machine parameters are computed on each entry). 10 feb 03, SJH.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLARTG( F, G, CS, SN, R )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION   CS
 | 
						|
      COMPLEX*16         F, G, R, SN
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   TWO, ONE, ZERO
 | 
						|
      PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
      COMPLEX*16         CZERO
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
*     LOGICAL            FIRST
 | 
						|
      INTEGER            COUNT, I
 | 
						|
      DOUBLE PRECISION   D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
 | 
						|
     $                   SAFMN2, SAFMX2, SCALE
 | 
						|
      COMPLEX*16         FF, FS, GS
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      DOUBLE PRECISION   DLAMCH, DLAPY2
 | 
						|
      LOGICAL            DISNAN
 | 
						|
      EXTERNAL           DLAMCH, DLAPY2, DISNAN
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG,
 | 
						|
     $                   MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Statement Functions ..
 | 
						|
      DOUBLE PRECISION   ABS1, ABSSQ
 | 
						|
*     ..
 | 
						|
*     .. Statement Function definitions ..
 | 
						|
      ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) )
 | 
						|
      ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      SAFMIN = DLAMCH( 'S' )
 | 
						|
      EPS = DLAMCH( 'E' )
 | 
						|
      SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
 | 
						|
     $         LOG( DLAMCH( 'B' ) ) / TWO )
 | 
						|
      SAFMX2 = ONE / SAFMN2
 | 
						|
      SCALE = MAX( ABS1( F ), ABS1( G ) )
 | 
						|
      FS = F
 | 
						|
      GS = G
 | 
						|
      COUNT = 0
 | 
						|
      IF( SCALE.GE.SAFMX2 ) THEN
 | 
						|
   10    CONTINUE
 | 
						|
         COUNT = COUNT + 1
 | 
						|
         FS = FS*SAFMN2
 | 
						|
         GS = GS*SAFMN2
 | 
						|
         SCALE = SCALE*SAFMN2
 | 
						|
         IF( SCALE.GE.SAFMX2 .AND. COUNT .LT. 20 )
 | 
						|
     $      GO TO 10
 | 
						|
      ELSE IF( SCALE.LE.SAFMN2 ) THEN
 | 
						|
         IF( G.EQ.CZERO.OR.DISNAN( ABS( G ) ) ) THEN
 | 
						|
            CS = ONE
 | 
						|
            SN = CZERO
 | 
						|
            R = F
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
   20    CONTINUE
 | 
						|
         COUNT = COUNT - 1
 | 
						|
         FS = FS*SAFMX2
 | 
						|
         GS = GS*SAFMX2
 | 
						|
         SCALE = SCALE*SAFMX2
 | 
						|
         IF( SCALE.LE.SAFMN2 )
 | 
						|
     $      GO TO 20
 | 
						|
      END IF
 | 
						|
      F2 = ABSSQ( FS )
 | 
						|
      G2 = ABSSQ( GS )
 | 
						|
      IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
 | 
						|
*
 | 
						|
*        This is a rare case: F is very small.
 | 
						|
*
 | 
						|
         IF( F.EQ.CZERO ) THEN
 | 
						|
            CS = ZERO
 | 
						|
            R = DLAPY2( DBLE( G ), DIMAG( G ) )
 | 
						|
*           Do complex/real division explicitly with two real divisions
 | 
						|
            D = DLAPY2( DBLE( GS ), DIMAG( GS ) )
 | 
						|
            SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D )
 | 
						|
            RETURN
 | 
						|
         END IF
 | 
						|
         F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) )
 | 
						|
*        G2 and G2S are accurate
 | 
						|
*        G2 is at least SAFMIN, and G2S is at least SAFMN2
 | 
						|
         G2S = SQRT( G2 )
 | 
						|
*        Error in CS from underflow in F2S is at most
 | 
						|
*        UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
 | 
						|
*        If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
 | 
						|
*        and so CS .lt. sqrt(SAFMIN)
 | 
						|
*        If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
 | 
						|
*        and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
 | 
						|
*        Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
 | 
						|
         CS = F2S / G2S
 | 
						|
*        Make sure abs(FF) = 1
 | 
						|
*        Do complex/real division explicitly with 2 real divisions
 | 
						|
         IF( ABS1( F ).GT.ONE ) THEN
 | 
						|
            D = DLAPY2( DBLE( F ), DIMAG( F ) )
 | 
						|
            FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D )
 | 
						|
         ELSE
 | 
						|
            DR = SAFMX2*DBLE( F )
 | 
						|
            DI = SAFMX2*DIMAG( F )
 | 
						|
            D = DLAPY2( DR, DI )
 | 
						|
            FF = DCMPLX( DR / D, DI / D )
 | 
						|
         END IF
 | 
						|
         SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S )
 | 
						|
         R = CS*F + SN*G
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        This is the most common case.
 | 
						|
*        Neither F2 nor F2/G2 are less than SAFMIN
 | 
						|
*        F2S cannot overflow, and it is accurate
 | 
						|
*
 | 
						|
         F2S = SQRT( ONE+G2 / F2 )
 | 
						|
*        Do the F2S(real)*FS(complex) multiply with two real multiplies
 | 
						|
         R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) )
 | 
						|
         CS = ONE / F2S
 | 
						|
         D = F2 + G2
 | 
						|
*        Do complex/real division explicitly with two real divisions
 | 
						|
         SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D )
 | 
						|
         SN = SN*DCONJG( GS )
 | 
						|
         IF( COUNT.NE.0 ) THEN
 | 
						|
            IF( COUNT.GT.0 ) THEN
 | 
						|
               DO 30 I = 1, COUNT
 | 
						|
                  R = R*SAFMX2
 | 
						|
   30          CONTINUE
 | 
						|
            ELSE
 | 
						|
               DO 40 I = 1, -COUNT
 | 
						|
                  R = R*SAFMN2
 | 
						|
   40          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLARTG
 | 
						|
*
 | 
						|
      END
 |