322 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
 | 
						||
*
 | 
						||
*  =========== DOCUMENTATION ===========
 | 
						||
*
 | 
						||
* Online html documentation available at
 | 
						||
*            http://www.netlib.org/lapack/explore-html/
 | 
						||
*
 | 
						||
*> \htmlonly
 | 
						||
*> Download ZLAGTM + dependencies
 | 
						||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlagtm.f">
 | 
						||
*> [TGZ]</a>
 | 
						||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlagtm.f">
 | 
						||
*> [ZIP]</a>
 | 
						||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlagtm.f">
 | 
						||
*> [TXT]</a>
 | 
						||
*> \endhtmlonly
 | 
						||
*
 | 
						||
*  Definition:
 | 
						||
*  ===========
 | 
						||
*
 | 
						||
*       SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
 | 
						||
*                          B, LDB )
 | 
						||
*
 | 
						||
*       .. Scalar Arguments ..
 | 
						||
*       CHARACTER          TRANS
 | 
						||
*       INTEGER            LDB, LDX, N, NRHS
 | 
						||
*       DOUBLE PRECISION   ALPHA, BETA
 | 
						||
*       ..
 | 
						||
*       .. Array Arguments ..
 | 
						||
*       COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * ),
 | 
						||
*      $                   X( LDX, * )
 | 
						||
*       ..
 | 
						||
*
 | 
						||
*
 | 
						||
*> \par Purpose:
 | 
						||
*  =============
 | 
						||
*>
 | 
						||
*> \verbatim
 | 
						||
*>
 | 
						||
*> ZLAGTM performs a matrix-vector product of the form
 | 
						||
*>
 | 
						||
*>    B := alpha * A * X + beta * B
 | 
						||
*>
 | 
						||
*> where A is a tridiagonal matrix of order N, B and X are N by NRHS
 | 
						||
*> matrices, and alpha and beta are real scalars, each of which may be
 | 
						||
*> 0., 1., or -1.
 | 
						||
*> \endverbatim
 | 
						||
*
 | 
						||
*  Arguments:
 | 
						||
*  ==========
 | 
						||
*
 | 
						||
*> \param[in] TRANS
 | 
						||
*> \verbatim
 | 
						||
*>          TRANS is CHARACTER*1
 | 
						||
*>          Specifies the operation applied to A.
 | 
						||
*>          = 'N':  No transpose, B := alpha * A * X + beta * B
 | 
						||
*>          = 'T':  Transpose,    B := alpha * A**T * X + beta * B
 | 
						||
*>          = 'C':  Conjugate transpose, B := alpha * A**H * X + beta * B
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] N
 | 
						||
*> \verbatim
 | 
						||
*>          N is INTEGER
 | 
						||
*>          The order of the matrix A.  N >= 0.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] NRHS
 | 
						||
*> \verbatim
 | 
						||
*>          NRHS is INTEGER
 | 
						||
*>          The number of right hand sides, i.e., the number of columns
 | 
						||
*>          of the matrices X and B.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] ALPHA
 | 
						||
*> \verbatim
 | 
						||
*>          ALPHA is DOUBLE PRECISION
 | 
						||
*>          The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise,
 | 
						||
*>          it is assumed to be 0.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] DL
 | 
						||
*> \verbatim
 | 
						||
*>          DL is COMPLEX*16 array, dimension (N-1)
 | 
						||
*>          The (n-1) sub-diagonal elements of T.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] D
 | 
						||
*> \verbatim
 | 
						||
*>          D is COMPLEX*16 array, dimension (N)
 | 
						||
*>          The diagonal elements of T.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] DU
 | 
						||
*> \verbatim
 | 
						||
*>          DU is COMPLEX*16 array, dimension (N-1)
 | 
						||
*>          The (n-1) super-diagonal elements of T.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] X
 | 
						||
*> \verbatim
 | 
						||
*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
 | 
						||
*>          The N by NRHS matrix X.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] LDX
 | 
						||
*> \verbatim
 | 
						||
*>          LDX is INTEGER
 | 
						||
*>          The leading dimension of the array X.  LDX >= max(N,1).
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] BETA
 | 
						||
*> \verbatim
 | 
						||
*>          BETA is DOUBLE PRECISION
 | 
						||
*>          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
 | 
						||
*>          it is assumed to be 1.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in,out] B
 | 
						||
*> \verbatim
 | 
						||
*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
 | 
						||
*>          On entry, the N by NRHS matrix B.
 | 
						||
*>          On exit, B is overwritten by the matrix expression
 | 
						||
*>          B := alpha * A * X + beta * B.
 | 
						||
*> \endverbatim
 | 
						||
*>
 | 
						||
*> \param[in] LDB
 | 
						||
*> \verbatim
 | 
						||
*>          LDB is INTEGER
 | 
						||
*>          The leading dimension of the array B.  LDB >= max(N,1).
 | 
						||
*> \endverbatim
 | 
						||
*
 | 
						||
*  Authors:
 | 
						||
*  ========
 | 
						||
*
 | 
						||
*> \author Univ. of Tennessee
 | 
						||
*> \author Univ. of California Berkeley
 | 
						||
*> \author Univ. of Colorado Denver
 | 
						||
*> \author NAG Ltd.
 | 
						||
*
 | 
						||
*> \date December 2016
 | 
						||
*
 | 
						||
*> \ingroup complex16OTHERauxiliary
 | 
						||
*
 | 
						||
*  =====================================================================
 | 
						||
      SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
 | 
						||
     $                   B, LDB )
 | 
						||
*
 | 
						||
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						||
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						||
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						||
*     December 2016
 | 
						||
*
 | 
						||
*     .. Scalar Arguments ..
 | 
						||
      CHARACTER          TRANS
 | 
						||
      INTEGER            LDB, LDX, N, NRHS
 | 
						||
      DOUBLE PRECISION   ALPHA, BETA
 | 
						||
*     ..
 | 
						||
*     .. Array Arguments ..
 | 
						||
      COMPLEX*16         B( LDB, * ), D( * ), DL( * ), DU( * ),
 | 
						||
     $                   X( LDX, * )
 | 
						||
*     ..
 | 
						||
*
 | 
						||
*  =====================================================================
 | 
						||
*
 | 
						||
*     .. Parameters ..
 | 
						||
      DOUBLE PRECISION   ONE, ZERO
 | 
						||
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						||
*     ..
 | 
						||
*     .. Local Scalars ..
 | 
						||
      INTEGER            I, J
 | 
						||
*     ..
 | 
						||
*     .. External Functions ..
 | 
						||
      LOGICAL            LSAME
 | 
						||
      EXTERNAL           LSAME
 | 
						||
*     ..
 | 
						||
*     .. Intrinsic Functions ..
 | 
						||
      INTRINSIC          DCONJG
 | 
						||
*     ..
 | 
						||
*     .. Executable Statements ..
 | 
						||
*
 | 
						||
      IF( N.EQ.0 )
 | 
						||
     $   RETURN
 | 
						||
*
 | 
						||
*     Multiply B by BETA if BETA.NE.1.
 | 
						||
*
 | 
						||
      IF( BETA.EQ.ZERO ) THEN
 | 
						||
         DO 20 J = 1, NRHS
 | 
						||
            DO 10 I = 1, N
 | 
						||
               B( I, J ) = ZERO
 | 
						||
   10       CONTINUE
 | 
						||
   20    CONTINUE
 | 
						||
      ELSE IF( BETA.EQ.-ONE ) THEN
 | 
						||
         DO 40 J = 1, NRHS
 | 
						||
            DO 30 I = 1, N
 | 
						||
               B( I, J ) = -B( I, J )
 | 
						||
   30       CONTINUE
 | 
						||
   40    CONTINUE
 | 
						||
      END IF
 | 
						||
*
 | 
						||
      IF( ALPHA.EQ.ONE ) THEN
 | 
						||
         IF( LSAME( TRANS, 'N' ) ) THEN
 | 
						||
*
 | 
						||
*           Compute B := B + A*X
 | 
						||
*
 | 
						||
            DO 60 J = 1, NRHS
 | 
						||
               IF( N.EQ.1 ) THEN
 | 
						||
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
 | 
						||
               ELSE
 | 
						||
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
 | 
						||
     $                        DU( 1 )*X( 2, J )
 | 
						||
                  B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
 | 
						||
     $                        D( N )*X( N, J )
 | 
						||
                  DO 50 I = 2, N - 1
 | 
						||
                     B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
 | 
						||
     $                           D( I )*X( I, J ) + DU( I )*X( I+1, J )
 | 
						||
   50             CONTINUE
 | 
						||
               END IF
 | 
						||
   60       CONTINUE
 | 
						||
         ELSE IF( LSAME( TRANS, 'T' ) ) THEN
 | 
						||
*
 | 
						||
*           Compute B := B + A**T * X
 | 
						||
*
 | 
						||
            DO 80 J = 1, NRHS
 | 
						||
               IF( N.EQ.1 ) THEN
 | 
						||
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
 | 
						||
               ELSE
 | 
						||
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
 | 
						||
     $                        DL( 1 )*X( 2, J )
 | 
						||
                  B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
 | 
						||
     $                        D( N )*X( N, J )
 | 
						||
                  DO 70 I = 2, N - 1
 | 
						||
                     B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
 | 
						||
     $                           D( I )*X( I, J ) + DL( I )*X( I+1, J )
 | 
						||
   70             CONTINUE
 | 
						||
               END IF
 | 
						||
   80       CONTINUE
 | 
						||
         ELSE IF( LSAME( TRANS, 'C' ) ) THEN
 | 
						||
*
 | 
						||
*           Compute B := B + A**H * X
 | 
						||
*
 | 
						||
            DO 100 J = 1, NRHS
 | 
						||
               IF( N.EQ.1 ) THEN
 | 
						||
                  B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J )
 | 
						||
               ELSE
 | 
						||
                  B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J ) +
 | 
						||
     $                        DCONJG( DL( 1 ) )*X( 2, J )
 | 
						||
                  B( N, J ) = B( N, J ) + DCONJG( DU( N-1 ) )*
 | 
						||
     $                        X( N-1, J ) + DCONJG( D( N ) )*X( N, J )
 | 
						||
                  DO 90 I = 2, N - 1
 | 
						||
                     B( I, J ) = B( I, J ) + DCONJG( DU( I-1 ) )*
 | 
						||
     $                           X( I-1, J ) + DCONJG( D( I ) )*
 | 
						||
     $                           X( I, J ) + DCONJG( DL( I ) )*
 | 
						||
     $                           X( I+1, J )
 | 
						||
   90             CONTINUE
 | 
						||
               END IF
 | 
						||
  100       CONTINUE
 | 
						||
         END IF
 | 
						||
      ELSE IF( ALPHA.EQ.-ONE ) THEN
 | 
						||
         IF( LSAME( TRANS, 'N' ) ) THEN
 | 
						||
*
 | 
						||
*           Compute B := B - A*X
 | 
						||
*
 | 
						||
            DO 120 J = 1, NRHS
 | 
						||
               IF( N.EQ.1 ) THEN
 | 
						||
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
 | 
						||
               ELSE
 | 
						||
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
 | 
						||
     $                        DU( 1 )*X( 2, J )
 | 
						||
                  B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
 | 
						||
     $                        D( N )*X( N, J )
 | 
						||
                  DO 110 I = 2, N - 1
 | 
						||
                     B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
 | 
						||
     $                           D( I )*X( I, J ) - DU( I )*X( I+1, J )
 | 
						||
  110             CONTINUE
 | 
						||
               END IF
 | 
						||
  120       CONTINUE
 | 
						||
         ELSE IF( LSAME( TRANS, 'T' ) ) THEN
 | 
						||
*
 | 
						||
*           Compute B := B - A**T *X
 | 
						||
*
 | 
						||
            DO 140 J = 1, NRHS
 | 
						||
               IF( N.EQ.1 ) THEN
 | 
						||
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
 | 
						||
               ELSE
 | 
						||
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
 | 
						||
     $                        DL( 1 )*X( 2, J )
 | 
						||
                  B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
 | 
						||
     $                        D( N )*X( N, J )
 | 
						||
                  DO 130 I = 2, N - 1
 | 
						||
                     B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
 | 
						||
     $                           D( I )*X( I, J ) - DL( I )*X( I+1, J )
 | 
						||
  130             CONTINUE
 | 
						||
               END IF
 | 
						||
  140       CONTINUE
 | 
						||
         ELSE IF( LSAME( TRANS, 'C' ) ) THEN
 | 
						||
*
 | 
						||
*           Compute B := B - A**H *X
 | 
						||
*
 | 
						||
            DO 160 J = 1, NRHS
 | 
						||
               IF( N.EQ.1 ) THEN
 | 
						||
                  B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J )
 | 
						||
               ELSE
 | 
						||
                  B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J ) -
 | 
						||
     $                        DCONJG( DL( 1 ) )*X( 2, J )
 | 
						||
                  B( N, J ) = B( N, J ) - DCONJG( DU( N-1 ) )*
 | 
						||
     $                        X( N-1, J ) - DCONJG( D( N ) )*X( N, J )
 | 
						||
                  DO 150 I = 2, N - 1
 | 
						||
                     B( I, J ) = B( I, J ) - DCONJG( DU( I-1 ) )*
 | 
						||
     $                           X( I-1, J ) - DCONJG( D( I ) )*
 | 
						||
     $                           X( I, J ) - DCONJG( DL( I ) )*
 | 
						||
     $                           X( I+1, J )
 | 
						||
  150             CONTINUE
 | 
						||
               END IF
 | 
						||
  160       CONTINUE
 | 
						||
         END IF
 | 
						||
      END IF
 | 
						||
      RETURN
 | 
						||
*
 | 
						||
*     End of ZLAGTM
 | 
						||
*
 | 
						||
      END
 |