553 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			553 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZHFRK performs a Hermitian rank-k operation for matrix in RFP format.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZHFRK + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhfrk.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhfrk.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhfrk.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
 | 
						|
*                         C )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       DOUBLE PRECISION   ALPHA, BETA
 | 
						|
*       INTEGER            K, LDA, N
 | 
						|
*       CHARACTER          TRANS, TRANSR, UPLO
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         A( LDA, * ), C( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> Level 3 BLAS like routine for C in RFP Format.
 | 
						|
*>
 | 
						|
*> ZHFRK performs one of the Hermitian rank--k operations
 | 
						|
*>
 | 
						|
*>    C := alpha*A*A**H + beta*C,
 | 
						|
*>
 | 
						|
*> or
 | 
						|
*>
 | 
						|
*>    C := alpha*A**H*A + beta*C,
 | 
						|
*>
 | 
						|
*> where alpha and beta are real scalars, C is an n--by--n Hermitian
 | 
						|
*> matrix and A is an n--by--k matrix in the first case and a k--by--n
 | 
						|
*> matrix in the second case.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] TRANSR
 | 
						|
*> \verbatim
 | 
						|
*>          TRANSR is CHARACTER*1
 | 
						|
*>          = 'N':  The Normal Form of RFP A is stored;
 | 
						|
*>          = 'C':  The Conjugate-transpose Form of RFP A is stored.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>           On  entry,   UPLO  specifies  whether  the  upper  or  lower
 | 
						|
*>           triangular  part  of the  array  C  is to be  referenced  as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
 | 
						|
*>                                  is to be referenced.
 | 
						|
*>
 | 
						|
*>              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
 | 
						|
*>                                  is to be referenced.
 | 
						|
*>
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TRANS
 | 
						|
*> \verbatim
 | 
						|
*>          TRANS is CHARACTER*1
 | 
						|
*>           On entry,  TRANS  specifies the operation to be performed as
 | 
						|
*>           follows:
 | 
						|
*>
 | 
						|
*>              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C.
 | 
						|
*>
 | 
						|
*>              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C.
 | 
						|
*>
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>           On entry,  N specifies the order of the matrix C.  N must be
 | 
						|
*>           at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] K
 | 
						|
*> \verbatim
 | 
						|
*>          K is INTEGER
 | 
						|
*>           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
 | 
						|
*>           of  columns   of  the   matrix   A,   and  on   entry   with
 | 
						|
*>           TRANS = 'C' or 'c',  K  specifies  the number of rows of the
 | 
						|
*>           matrix A.  K must be at least zero.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ALPHA
 | 
						|
*> \verbatim
 | 
						|
*>          ALPHA is DOUBLE PRECISION
 | 
						|
*>           On entry, ALPHA specifies the scalar alpha.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX*16 array, dimension (LDA,ka)
 | 
						|
*>           where KA
 | 
						|
*>           is K  when TRANS = 'N' or 'n', and is N otherwise. Before
 | 
						|
*>           entry with TRANS = 'N' or 'n', the leading N--by--K part of
 | 
						|
*>           the array A must contain the matrix A, otherwise the leading
 | 
						|
*>           K--by--N part of the array A must contain the matrix A.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>           On entry, LDA specifies the first dimension of A as declared
 | 
						|
*>           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
 | 
						|
*>           then  LDA must be at least  max( 1, n ), otherwise  LDA must
 | 
						|
*>           be at least  max( 1, k ).
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] BETA
 | 
						|
*> \verbatim
 | 
						|
*>          BETA is DOUBLE PRECISION
 | 
						|
*>           On entry, BETA specifies the scalar beta.
 | 
						|
*>           Unchanged on exit.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array, dimension (N*(N+1)/2)
 | 
						|
*>           On entry, the matrix A in RFP Format. RFP Format is
 | 
						|
*>           described by TRANSR, UPLO and N. Note that the imaginary
 | 
						|
*>           parts of the diagonal elements need not be set, they are
 | 
						|
*>           assumed to be zero, and on exit they are set to zero.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2017
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
 | 
						|
     $                  C )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.1) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2017
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      DOUBLE PRECISION   ALPHA, BETA
 | 
						|
      INTEGER            K, LDA, N
 | 
						|
      CHARACTER          TRANS, TRANSR, UPLO
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         A( LDA, * ), C( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      COMPLEX*16         CZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LOWER, NORMALTRANSR, NISODD, NOTRANS
 | 
						|
      INTEGER            INFO, NROWA, J, NK, N1, N2
 | 
						|
      COMPLEX*16         CALPHA, CBETA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           XERBLA, ZGEMM, ZHERK
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, DCMPLX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      NORMALTRANSR = LSAME( TRANSR, 'N' )
 | 
						|
      LOWER = LSAME( UPLO, 'L' )
 | 
						|
      NOTRANS = LSAME( TRANS, 'N' )
 | 
						|
*
 | 
						|
      IF( NOTRANS ) THEN
 | 
						|
         NROWA = N
 | 
						|
      ELSE
 | 
						|
         NROWA = K
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( K.LT.0 ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'ZHFRK ', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
*     The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
 | 
						|
*     done (it is in ZHERK for example) and left in the general case.
 | 
						|
*
 | 
						|
      IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
 | 
						|
     $    ( BETA.EQ.ONE ) ) )RETURN
 | 
						|
*
 | 
						|
      IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
 | 
						|
         DO J = 1, ( ( N*( N+1 ) ) / 2 )
 | 
						|
            C( J ) = CZERO
 | 
						|
         END DO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      CALPHA = DCMPLX( ALPHA, ZERO )
 | 
						|
      CBETA = DCMPLX( BETA, ZERO )
 | 
						|
*
 | 
						|
*     C is N-by-N.
 | 
						|
*     If N is odd, set NISODD = .TRUE., and N1 and N2.
 | 
						|
*     If N is even, NISODD = .FALSE., and NK.
 | 
						|
*
 | 
						|
      IF( MOD( N, 2 ).EQ.0 ) THEN
 | 
						|
         NISODD = .FALSE.
 | 
						|
         NK = N / 2
 | 
						|
      ELSE
 | 
						|
         NISODD = .TRUE.
 | 
						|
         IF( LOWER ) THEN
 | 
						|
            N2 = N / 2
 | 
						|
            N1 = N - N2
 | 
						|
         ELSE
 | 
						|
            N1 = N / 2
 | 
						|
            N2 = N - N1
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( NISODD ) THEN
 | 
						|
*
 | 
						|
*        N is odd
 | 
						|
*
 | 
						|
         IF( NORMALTRANSR ) THEN
 | 
						|
*
 | 
						|
*           N is odd and TRANSR = 'N'
 | 
						|
*
 | 
						|
            IF( LOWER ) THEN
 | 
						|
*
 | 
						|
*              N is odd, TRANSR = 'N', and UPLO = 'L'
 | 
						|
*
 | 
						|
               IF( NOTRANS ) THEN
 | 
						|
*
 | 
						|
*                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 1 ), N )
 | 
						|
                  CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
 | 
						|
     $                        BETA, C( N+1 ), N )
 | 
						|
                  CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
 | 
						|
     $                        LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 1 ), N )
 | 
						|
                  CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
 | 
						|
     $                        BETA, C( N+1 ), N )
 | 
						|
                  CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
 | 
						|
     $                        LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              N is odd, TRANSR = 'N', and UPLO = 'U'
 | 
						|
*
 | 
						|
               IF( NOTRANS ) THEN
 | 
						|
*
 | 
						|
*                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( N2+1 ), N )
 | 
						|
                  CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
 | 
						|
     $                        BETA, C( N1+1 ), N )
 | 
						|
                  CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
 | 
						|
     $                        LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( N2+1 ), N )
 | 
						|
                  CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
 | 
						|
     $                        BETA, C( N1+1 ), N )
 | 
						|
                  CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
 | 
						|
     $                        LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           N is odd, and TRANSR = 'C'
 | 
						|
*
 | 
						|
            IF( LOWER ) THEN
 | 
						|
*
 | 
						|
*              N is odd, TRANSR = 'C', and UPLO = 'L'
 | 
						|
*
 | 
						|
               IF( NOTRANS ) THEN
 | 
						|
*
 | 
						|
*                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 1 ), N1 )
 | 
						|
                  CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 2 ), N1 )
 | 
						|
                  CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
 | 
						|
     $                        LDA, A( N1+1, 1 ), LDA, CBETA,
 | 
						|
     $                        C( N1*N1+1 ), N1 )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 1 ), N1 )
 | 
						|
                  CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
 | 
						|
     $                        BETA, C( 2 ), N1 )
 | 
						|
                  CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
 | 
						|
     $                        LDA, A( 1, N1+1 ), LDA, CBETA,
 | 
						|
     $                        C( N1*N1+1 ), N1 )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              N is odd, TRANSR = 'C', and UPLO = 'U'
 | 
						|
*
 | 
						|
               IF( NOTRANS ) THEN
 | 
						|
*
 | 
						|
*                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( N2*N2+1 ), N2 )
 | 
						|
                  CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
 | 
						|
     $                        BETA, C( N1*N2+1 ), N2 )
 | 
						|
                  CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
 | 
						|
     $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( N2*N2+1 ), N2 )
 | 
						|
                  CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
 | 
						|
     $                        BETA, C( N1*N2+1 ), N2 )
 | 
						|
                  CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
 | 
						|
     $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        N is even
 | 
						|
*
 | 
						|
         IF( NORMALTRANSR ) THEN
 | 
						|
*
 | 
						|
*           N is even and TRANSR = 'N'
 | 
						|
*
 | 
						|
            IF( LOWER ) THEN
 | 
						|
*
 | 
						|
*              N is even, TRANSR = 'N', and UPLO = 'L'
 | 
						|
*
 | 
						|
               IF( NOTRANS ) THEN
 | 
						|
*
 | 
						|
*                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 2 ), N+1 )
 | 
						|
                  CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 1 ), N+1 )
 | 
						|
                  CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
 | 
						|
     $                        LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
 | 
						|
     $                        N+1 )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 2 ), N+1 )
 | 
						|
                  CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
 | 
						|
     $                        BETA, C( 1 ), N+1 )
 | 
						|
                  CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
 | 
						|
     $                        LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
 | 
						|
     $                        N+1 )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              N is even, TRANSR = 'N', and UPLO = 'U'
 | 
						|
*
 | 
						|
               IF( NOTRANS ) THEN
 | 
						|
*
 | 
						|
*                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( NK+2 ), N+1 )
 | 
						|
                  CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
 | 
						|
     $                        BETA, C( NK+1 ), N+1 )
 | 
						|
                  CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
 | 
						|
     $                        LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
 | 
						|
     $                        N+1 )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( NK+2 ), N+1 )
 | 
						|
                  CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
 | 
						|
     $                        BETA, C( NK+1 ), N+1 )
 | 
						|
                  CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
 | 
						|
     $                        LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
 | 
						|
     $                        N+1 )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           N is even, and TRANSR = 'C'
 | 
						|
*
 | 
						|
            IF( LOWER ) THEN
 | 
						|
*
 | 
						|
*              N is even, TRANSR = 'C', and UPLO = 'L'
 | 
						|
*
 | 
						|
               IF( NOTRANS ) THEN
 | 
						|
*
 | 
						|
*                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( NK+1 ), NK )
 | 
						|
                  CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
 | 
						|
     $                        BETA, C( 1 ), NK )
 | 
						|
                  CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
 | 
						|
     $                        LDA, A( NK+1, 1 ), LDA, CBETA,
 | 
						|
     $                        C( ( ( NK+1 )*NK )+1 ), NK )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( NK+1 ), NK )
 | 
						|
                  CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
 | 
						|
     $                        BETA, C( 1 ), NK )
 | 
						|
                  CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
 | 
						|
     $                        LDA, A( 1, NK+1 ), LDA, CBETA,
 | 
						|
     $                        C( ( ( NK+1 )*NK )+1 ), NK )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              N is even, TRANSR = 'C', and UPLO = 'U'
 | 
						|
*
 | 
						|
               IF( NOTRANS ) THEN
 | 
						|
*
 | 
						|
*                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( NK*( NK+1 )+1 ), NK )
 | 
						|
                  CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
 | 
						|
     $                        BETA, C( NK*NK+1 ), NK )
 | 
						|
                  CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
 | 
						|
     $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
*                 N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
 | 
						|
*
 | 
						|
                  CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
 | 
						|
     $                        BETA, C( NK*( NK+1 )+1 ), NK )
 | 
						|
                  CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
 | 
						|
     $                        BETA, C( NK*NK+1 ), NK )
 | 
						|
                  CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
 | 
						|
     $                        LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZHFRK
 | 
						|
*
 | 
						|
      END
 |