583 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			583 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief <b> SSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SSTEVR + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstevr.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstevr.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstevr.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
 | 
						|
*                          M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
 | 
						|
*                          LIWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          JOBZ, RANGE
 | 
						|
*       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 | 
						|
*       REAL               ABSTOL, VL, VU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            ISUPPZ( * ), IWORK( * )
 | 
						|
*       REAL               D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SSTEVR computes selected eigenvalues and, optionally, eigenvectors
 | 
						|
*> of a real symmetric tridiagonal matrix T.  Eigenvalues and
 | 
						|
*> eigenvectors can be selected by specifying either a range of values
 | 
						|
*> or a range of indices for the desired eigenvalues.
 | 
						|
*>
 | 
						|
*> Whenever possible, SSTEVR calls SSTEMR to compute the
 | 
						|
*> eigenspectrum using Relatively Robust Representations.  SSTEMR
 | 
						|
*> computes eigenvalues by the dqds algorithm, while orthogonal
 | 
						|
*> eigenvectors are computed from various "good" L D L^T representations
 | 
						|
*> (also known as Relatively Robust Representations). Gram-Schmidt
 | 
						|
*> orthogonalization is avoided as far as possible. More specifically,
 | 
						|
*> the various steps of the algorithm are as follows. For the i-th
 | 
						|
*> unreduced block of T,
 | 
						|
*>    (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
 | 
						|
*>         is a relatively robust representation,
 | 
						|
*>    (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
 | 
						|
*>        relative accuracy by the dqds algorithm,
 | 
						|
*>    (c) If there is a cluster of close eigenvalues, "choose" sigma_i
 | 
						|
*>        close to the cluster, and go to step (a),
 | 
						|
*>    (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
 | 
						|
*>        compute the corresponding eigenvector by forming a
 | 
						|
*>        rank-revealing twisted factorization.
 | 
						|
*> The desired accuracy of the output can be specified by the input
 | 
						|
*> parameter ABSTOL.
 | 
						|
*>
 | 
						|
*> For more details, see "A new O(n^2) algorithm for the symmetric
 | 
						|
*> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
 | 
						|
*> Computer Science Division Technical Report No. UCB//CSD-97-971,
 | 
						|
*> UC Berkeley, May 1997.
 | 
						|
*>
 | 
						|
*>
 | 
						|
*> Note 1 : SSTEVR calls SSTEMR when the full spectrum is requested
 | 
						|
*> on machines which conform to the ieee-754 floating point standard.
 | 
						|
*> SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and
 | 
						|
*> when partial spectrum requests are made.
 | 
						|
*>
 | 
						|
*> Normal execution of SSTEMR may create NaNs and infinities and
 | 
						|
*> hence may abort due to a floating point exception in environments
 | 
						|
*> which do not handle NaNs and infinities in the ieee standard default
 | 
						|
*> manner.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] JOBZ
 | 
						|
*> \verbatim
 | 
						|
*>          JOBZ is CHARACTER*1
 | 
						|
*>          = 'N':  Compute eigenvalues only;
 | 
						|
*>          = 'V':  Compute eigenvalues and eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RANGE
 | 
						|
*> \verbatim
 | 
						|
*>          RANGE is CHARACTER*1
 | 
						|
*>          = 'A': all eigenvalues will be found.
 | 
						|
*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | 
						|
*>                 will be found.
 | 
						|
*>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | 
						|
*>          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
 | 
						|
*>          SSTEIN are called
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] D
 | 
						|
*> \verbatim
 | 
						|
*>          D is REAL array, dimension (N)
 | 
						|
*>          On entry, the n diagonal elements of the tridiagonal matrix
 | 
						|
*>          A.
 | 
						|
*>          On exit, D may be multiplied by a constant factor chosen
 | 
						|
*>          to avoid over/underflow in computing the eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] E
 | 
						|
*> \verbatim
 | 
						|
*>          E is REAL array, dimension (max(1,N-1))
 | 
						|
*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
 | 
						|
*>          matrix A in elements 1 to N-1 of E.
 | 
						|
*>          On exit, E may be multiplied by a constant factor chosen
 | 
						|
*>          to avoid over/underflow in computing the eigenvalues.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is REAL
 | 
						|
*>          If RANGE='V', the lower bound of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] VU
 | 
						|
*> \verbatim
 | 
						|
*>          VU is REAL
 | 
						|
*>          If RANGE='V', the upper bound of the interval to
 | 
						|
*>          be searched for eigenvalues. VL < VU.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'I'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IL
 | 
						|
*> \verbatim
 | 
						|
*>          IL is INTEGER
 | 
						|
*>          If RANGE='I', the index of the
 | 
						|
*>          smallest eigenvalue to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IU
 | 
						|
*> \verbatim
 | 
						|
*>          IU is INTEGER
 | 
						|
*>          If RANGE='I', the index of the
 | 
						|
*>          largest eigenvalue to be returned.
 | 
						|
*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | 
						|
*>          Not referenced if RANGE = 'A' or 'V'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ABSTOL
 | 
						|
*> \verbatim
 | 
						|
*>          ABSTOL is REAL
 | 
						|
*>          The absolute error tolerance for the eigenvalues.
 | 
						|
*>          An approximate eigenvalue is accepted as converged
 | 
						|
*>          when it is determined to lie in an interval [a,b]
 | 
						|
*>          of width less than or equal to
 | 
						|
*>
 | 
						|
*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | 
						|
*>
 | 
						|
*>          where EPS is the machine precision.  If ABSTOL is less than
 | 
						|
*>          or equal to zero, then  EPS*|T|  will be used in its place,
 | 
						|
*>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | 
						|
*>          by reducing A to tridiagonal form.
 | 
						|
*>
 | 
						|
*>          See "Computing Small Singular Values of Bidiagonal Matrices
 | 
						|
*>          with Guaranteed High Relative Accuracy," by Demmel and
 | 
						|
*>          Kahan, LAPACK Working Note #3.
 | 
						|
*>
 | 
						|
*>          If high relative accuracy is important, set ABSTOL to
 | 
						|
*>          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
 | 
						|
*>          eigenvalues are computed to high relative accuracy when
 | 
						|
*>          possible in future releases.  The current code does not
 | 
						|
*>          make any guarantees about high relative accuracy, but
 | 
						|
*>          future releases will. See J. Barlow and J. Demmel,
 | 
						|
*>          "Computing Accurate Eigensystems of Scaled Diagonally
 | 
						|
*>          Dominant Matrices", LAPACK Working Note #7, for a discussion
 | 
						|
*>          of which matrices define their eigenvalues to high relative
 | 
						|
*>          accuracy.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The total number of eigenvalues found.  0 <= M <= N.
 | 
						|
*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] W
 | 
						|
*> \verbatim
 | 
						|
*>          W is REAL array, dimension (N)
 | 
						|
*>          The first M elements contain the selected eigenvalues in
 | 
						|
*>          ascending order.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] Z
 | 
						|
*> \verbatim
 | 
						|
*>          Z is REAL array, dimension (LDZ, max(1,M) )
 | 
						|
*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | 
						|
*>          contain the orthonormal eigenvectors of the matrix A
 | 
						|
*>          corresponding to the selected eigenvalues, with the i-th
 | 
						|
*>          column of Z holding the eigenvector associated with W(i).
 | 
						|
*>          Note: the user must ensure that at least max(1,M) columns are
 | 
						|
*>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | 
						|
*>          is not known in advance and an upper bound must be used.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDZ
 | 
						|
*> \verbatim
 | 
						|
*>          LDZ is INTEGER
 | 
						|
*>          The leading dimension of the array Z.  LDZ >= 1, and if
 | 
						|
*>          JOBZ = 'V', LDZ >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] ISUPPZ
 | 
						|
*> \verbatim
 | 
						|
*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
 | 
						|
*>          The support of the eigenvectors in Z, i.e., the indices
 | 
						|
*>          indicating the nonzero elements in Z. The i-th eigenvector
 | 
						|
*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
 | 
						|
*>          ISUPPZ( 2*i ).
 | 
						|
*>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>          On exit, if INFO = 0, WORK(1) returns the optimal (and
 | 
						|
*>          minimal) LWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>          The dimension of the array WORK.  LWORK >= 20*N.
 | 
						|
*>
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal sizes of the WORK and IWORK
 | 
						|
*>          arrays, returns these values as the first entries of the WORK
 | 
						|
*>          and IWORK arrays, and no error message related to LWORK or
 | 
						|
*>          LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | 
						|
*>          On exit, if INFO = 0, IWORK(1) returns the optimal (and
 | 
						|
*>          minimal) LIWORK.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LIWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LIWORK is INTEGER
 | 
						|
*>          The dimension of the array IWORK.  LIWORK >= 10*N.
 | 
						|
*>
 | 
						|
*>          If LIWORK = -1, then a workspace query is assumed; the
 | 
						|
*>          routine only calculates the optimal sizes of the WORK and
 | 
						|
*>          IWORK arrays, returns these values as the first entries of
 | 
						|
*>          the WORK and IWORK arrays, and no error message related to
 | 
						|
*>          LWORK or LIWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*>          > 0:  Internal error
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2016
 | 
						|
*
 | 
						|
*> \ingroup realOTHEReigen
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>     Inderjit Dhillon, IBM Almaden, USA \n
 | 
						|
*>     Osni Marques, LBNL/NERSC, USA \n
 | 
						|
*>     Ken Stanley, Computer Science Division, University of
 | 
						|
*>       California at Berkeley, USA \n
 | 
						|
*>     Jason Riedy, Computer Science Division, University of
 | 
						|
*>       California at Berkeley, USA \n
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
 | 
						|
     $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
 | 
						|
     $                   LIWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK driver routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          JOBZ, RANGE
 | 
						|
      INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
 | 
						|
      REAL               ABSTOL, VL, VU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            ISUPPZ( * ), IWORK( * )
 | 
						|
      REAL               D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE, TWO
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
 | 
						|
     $                   TRYRAC
 | 
						|
      CHARACTER          ORDER
 | 
						|
      INTEGER            I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
 | 
						|
     $                   INDIWO, ISCALE, J, JJ, LIWMIN, LWMIN, NSPLIT
 | 
						|
      REAL               BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
 | 
						|
     $                   TMP1, TNRM, VLL, VUU
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            ILAENV
 | 
						|
      REAL               SLAMCH, SLANST
 | 
						|
      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANST
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SCOPY, SSCAL, SSTEBZ, SSTEMR, SSTEIN, SSTERF,
 | 
						|
     $                   SSWAP, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          MAX, MIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      IEEEOK = ILAENV( 10, 'SSTEVR', 'N', 1, 2, 3, 4 )
 | 
						|
*
 | 
						|
      WANTZ = LSAME( JOBZ, 'V' )
 | 
						|
      ALLEIG = LSAME( RANGE, 'A' )
 | 
						|
      VALEIG = LSAME( RANGE, 'V' )
 | 
						|
      INDEIG = LSAME( RANGE, 'I' )
 | 
						|
*
 | 
						|
      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
 | 
						|
      LWMIN = MAX( 1, 20*N )
 | 
						|
      LIWMIN = MAX(1, 10*N )
 | 
						|
*
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE
 | 
						|
         IF( VALEIG ) THEN
 | 
						|
            IF( N.GT.0 .AND. VU.LE.VL )
 | 
						|
     $         INFO = -7
 | 
						|
         ELSE IF( INDEIG ) THEN
 | 
						|
            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | 
						|
               INFO = -8
 | 
						|
            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | 
						|
               INFO = -9
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | 
						|
            INFO = -14
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.EQ.0 ) THEN
 | 
						|
         WORK( 1 ) = LWMIN
 | 
						|
         IWORK( 1 ) = LIWMIN
 | 
						|
*
 | 
						|
         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -17
 | 
						|
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
            INFO = -19
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'SSTEVR', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      M = 0
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      IF( N.EQ.1 ) THEN
 | 
						|
         IF( ALLEIG .OR. INDEIG ) THEN
 | 
						|
            M = 1
 | 
						|
            W( 1 ) = D( 1 )
 | 
						|
         ELSE
 | 
						|
            IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
 | 
						|
               M = 1
 | 
						|
               W( 1 ) = D( 1 )
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
         IF( WANTZ )
 | 
						|
     $      Z( 1, 1 ) = ONE
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Get machine constants.
 | 
						|
*
 | 
						|
      SAFMIN = SLAMCH( 'Safe minimum' )
 | 
						|
      EPS = SLAMCH( 'Precision' )
 | 
						|
      SMLNUM = SAFMIN / EPS
 | 
						|
      BIGNUM = ONE / SMLNUM
 | 
						|
      RMIN = SQRT( SMLNUM )
 | 
						|
      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
 | 
						|
*
 | 
						|
*
 | 
						|
*     Scale matrix to allowable range, if necessary.
 | 
						|
*
 | 
						|
      ISCALE = 0
 | 
						|
      IF( VALEIG ) THEN
 | 
						|
         VLL = VL
 | 
						|
         VUU = VU
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      TNRM = SLANST( 'M', N, D, E )
 | 
						|
      IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMIN / TNRM
 | 
						|
      ELSE IF( TNRM.GT.RMAX ) THEN
 | 
						|
         ISCALE = 1
 | 
						|
         SIGMA = RMAX / TNRM
 | 
						|
      END IF
 | 
						|
      IF( ISCALE.EQ.1 ) THEN
 | 
						|
         CALL SSCAL( N, SIGMA, D, 1 )
 | 
						|
         CALL SSCAL( N-1, SIGMA, E( 1 ), 1 )
 | 
						|
         IF( VALEIG ) THEN
 | 
						|
            VLL = VL*SIGMA
 | 
						|
            VUU = VU*SIGMA
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
 | 
						|
*     Initialize indices into workspaces.  Note: These indices are used only
 | 
						|
*     if SSTERF or SSTEMR fail.
 | 
						|
 | 
						|
*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
 | 
						|
*     stores the block indices of each of the M<=N eigenvalues.
 | 
						|
      INDIBL = 1
 | 
						|
*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
 | 
						|
*     stores the starting and finishing indices of each block.
 | 
						|
      INDISP = INDIBL + N
 | 
						|
*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
 | 
						|
*     that corresponding to eigenvectors that fail to converge in
 | 
						|
*     SSTEIN.  This information is discarded; if any fail, the driver
 | 
						|
*     returns INFO > 0.
 | 
						|
      INDIFL = INDISP + N
 | 
						|
*     INDIWO is the offset of the remaining integer workspace.
 | 
						|
      INDIWO = INDISP + N
 | 
						|
*
 | 
						|
*     If all eigenvalues are desired, then
 | 
						|
*     call SSTERF or SSTEMR.  If this fails for some eigenvalue, then
 | 
						|
*     try SSTEBZ.
 | 
						|
*
 | 
						|
*
 | 
						|
      TEST = .FALSE.
 | 
						|
      IF( INDEIG ) THEN
 | 
						|
         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
 | 
						|
            TEST = .TRUE.
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
 | 
						|
         CALL SCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
 | 
						|
         IF( .NOT.WANTZ ) THEN
 | 
						|
            CALL SCOPY( N, D, 1, W, 1 )
 | 
						|
            CALL SSTERF( N, W, WORK, INFO )
 | 
						|
         ELSE
 | 
						|
            CALL SCOPY( N, D, 1, WORK( N+1 ), 1 )
 | 
						|
            IF (ABSTOL .LE. TWO*N*EPS) THEN
 | 
						|
               TRYRAC = .TRUE.
 | 
						|
            ELSE
 | 
						|
               TRYRAC = .FALSE.
 | 
						|
            END IF
 | 
						|
            CALL SSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
 | 
						|
     $                   IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
 | 
						|
     $                   WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
         IF( INFO.EQ.0 ) THEN
 | 
						|
            M = N
 | 
						|
            GO TO 10
 | 
						|
         END IF
 | 
						|
         INFO = 0
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         ORDER = 'B'
 | 
						|
      ELSE
 | 
						|
         ORDER = 'E'
 | 
						|
      END IF
 | 
						|
 | 
						|
      CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
 | 
						|
     $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
 | 
						|
     $             IWORK( INDIWO ), INFO )
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         CALL SSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
 | 
						|
     $                Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
 | 
						|
     $                INFO )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If matrix was scaled, then rescale eigenvalues appropriately.
 | 
						|
*
 | 
						|
   10 CONTINUE
 | 
						|
      IF( ISCALE.EQ.1 ) THEN
 | 
						|
         IF( INFO.EQ.0 ) THEN
 | 
						|
            IMAX = M
 | 
						|
         ELSE
 | 
						|
            IMAX = INFO - 1
 | 
						|
         END IF
 | 
						|
         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     If eigenvalues are not in order, then sort them, along with
 | 
						|
*     eigenvectors.
 | 
						|
*
 | 
						|
      IF( WANTZ ) THEN
 | 
						|
         DO 30 J = 1, M - 1
 | 
						|
            I = 0
 | 
						|
            TMP1 = W( J )
 | 
						|
            DO 20 JJ = J + 1, M
 | 
						|
               IF( W( JJ ).LT.TMP1 ) THEN
 | 
						|
                  I = JJ
 | 
						|
                  TMP1 = W( JJ )
 | 
						|
               END IF
 | 
						|
   20       CONTINUE
 | 
						|
*
 | 
						|
            IF( I.NE.0 ) THEN
 | 
						|
               W( I ) = W( J )
 | 
						|
               W( J ) = TMP1
 | 
						|
               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
 | 
						|
            END IF
 | 
						|
   30    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*      Causes problems with tests 19 & 20:
 | 
						|
*      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
 | 
						|
*
 | 
						|
*
 | 
						|
      WORK( 1 ) = LWMIN
 | 
						|
      IWORK( 1 ) = LIWMIN
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SSTEVR
 | 
						|
*
 | 
						|
      END
 |