271 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			271 lines
		
	
	
		
			7.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SLASWLQ
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK,
 | 
						|
*                            LWORK, INFO)
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER           INFO, LDA, M, N, MB, NB, LDT, LWORK
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL              A( LDA, * ), T( LDT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SLASWLQ computes a blocked Tall-Skinny LQ factorization of
 | 
						|
*> a real M-by-N matrix A for M <= N:
 | 
						|
*>
 | 
						|
*>    A = ( L 0 ) *  Q,
 | 
						|
*>
 | 
						|
*> where:
 | 
						|
*>
 | 
						|
*>    Q is a n-by-N orthogonal matrix, stored on exit in an implicit
 | 
						|
*>    form in the elements above the digonal of the array A and in
 | 
						|
*>    the elemenst of the array T;
 | 
						|
*>    L is an lower-triangular M-by-M matrix stored on exit in
 | 
						|
*>    the elements on and below the diagonal of the array A.
 | 
						|
*>    0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A.  M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix A.  N >= M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MB
 | 
						|
*> \verbatim
 | 
						|
*>          MB is INTEGER
 | 
						|
*>          The row block size to be used in the blocked QR.
 | 
						|
*>          M >= MB >= 1
 | 
						|
*> \endverbatim
 | 
						|
*> \param[in] NB
 | 
						|
*> \verbatim
 | 
						|
*>          NB is INTEGER
 | 
						|
*>          The column block size to be used in the blocked QR.
 | 
						|
*>          NB > M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          On entry, the M-by-N matrix A.
 | 
						|
*>          On exit, the elements on and below the diagonal
 | 
						|
*>          of the array contain the N-by-N lower triangular matrix L;
 | 
						|
*>          the elements above the diagonal represent Q by the rows
 | 
						|
*>          of blocked V (see Further Details).
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is REAL array,
 | 
						|
*>          dimension (LDT, N * Number_of_row_blocks)
 | 
						|
*>          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
 | 
						|
*>          The blocked upper triangular block reflectors stored in compact form
 | 
						|
*>          as a sequence of upper triangular blocks.
 | 
						|
*>          See Further Details below.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= MB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>         (workspace) REAL array, dimension (MAX(1,LWORK))
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          The dimension of the array WORK.  LWORK >= MB * M.
 | 
						|
*>          If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>          only calculates the optimal size of the WORK array, returns
 | 
						|
*>          this value as the first entry of the WORK array, and no error
 | 
						|
*>          message related to LWORK is issued by XERBLA.
 | 
						|
*>
 | 
						|
*> \endverbatim
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
 | 
						|
*> representing Q as a product of other orthogonal matrices
 | 
						|
*>   Q = Q(1) * Q(2) * . . . * Q(k)
 | 
						|
*> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
 | 
						|
*>   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
 | 
						|
*>   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
 | 
						|
*>   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
 | 
						|
*>   . . .
 | 
						|
*>
 | 
						|
*> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
 | 
						|
*> stored under the diagonal of rows 1:MB of A, and by upper triangular
 | 
						|
*> block reflectors, stored in array T(1:LDT,1:N).
 | 
						|
*> For more information see Further Details in GELQT.
 | 
						|
*>
 | 
						|
*> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
 | 
						|
*> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
 | 
						|
*> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
 | 
						|
*> The last Q(k) may use fewer rows.
 | 
						|
*> For more information see Further Details in TPQRT.
 | 
						|
*>
 | 
						|
*> For more details of the overall algorithm, see the description of
 | 
						|
*> Sequential TSQR in Section 2.2 of [1].
 | 
						|
*>
 | 
						|
*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
 | 
						|
*>     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
 | 
						|
*>     SIAM J. Sci. Comput, vol. 34, no. 1, 2012
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
 | 
						|
     $                  INFO)
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.9.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
 | 
						|
*     November 2019
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER           INFO, LDA, M, N, MB, NB, LWORK, LDT
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL              A( LDA, * ), WORK( * ), T( LDT, *)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL    LQUERY
 | 
						|
      INTEGER    I, II, KK, CTR
 | 
						|
*     ..
 | 
						|
*     .. EXTERNAL FUNCTIONS ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     .. EXTERNAL SUBROUTINES ..
 | 
						|
      EXTERNAL           SGELQT, SGEQRT, STPLQT, STPQRT, XERBLA
 | 
						|
*     .. INTRINSIC FUNCTIONS ..
 | 
						|
      INTRINSIC          MAX, MIN, MOD
 | 
						|
*     ..
 | 
						|
*     .. EXECUTABLE STATEMENTS ..
 | 
						|
*
 | 
						|
*     TEST THE INPUT ARGUMENTS
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
*
 | 
						|
      LQUERY = ( LWORK.EQ.-1 )
 | 
						|
*
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
        INFO = -1
 | 
						|
      ELSE IF( N.LT.0 .OR. N.LT.M ) THEN
 | 
						|
        INFO = -2
 | 
						|
      ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN
 | 
						|
        INFO = -3
 | 
						|
      ELSE IF( NB.LE.M ) THEN
 | 
						|
        INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
        INFO = -5
 | 
						|
      ELSE IF( LDT.LT.MB ) THEN
 | 
						|
        INFO = -8
 | 
						|
      ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN
 | 
						|
        INFO = -10
 | 
						|
      END IF
 | 
						|
      IF( INFO.EQ.0)  THEN
 | 
						|
      WORK(1) = MB*M
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
        CALL XERBLA( 'SLASWLQ', -INFO )
 | 
						|
        RETURN
 | 
						|
      ELSE IF (LQUERY) THEN
 | 
						|
       RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( MIN(M,N).EQ.0 ) THEN
 | 
						|
          RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     The LQ Decomposition
 | 
						|
*
 | 
						|
       IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN
 | 
						|
        CALL SGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO)
 | 
						|
        RETURN
 | 
						|
       END IF
 | 
						|
*
 | 
						|
       KK = MOD((N-M),(NB-M))
 | 
						|
       II=N-KK+1
 | 
						|
*
 | 
						|
*      Compute the LQ factorization of the first block A(1:M,1:NB)
 | 
						|
*
 | 
						|
       CALL SGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO)
 | 
						|
       CTR = 1
 | 
						|
*
 | 
						|
       DO I = NB+1, II-NB+M , (NB-M)
 | 
						|
*
 | 
						|
*      Compute the QR factorization of the current block A(1:M,I:I+NB-M)
 | 
						|
*
 | 
						|
         CALL STPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ),
 | 
						|
     $                  LDA, T(1, CTR * M + 1),
 | 
						|
     $                  LDT, WORK, INFO )
 | 
						|
         CTR = CTR + 1
 | 
						|
       END DO
 | 
						|
*
 | 
						|
*     Compute the QR factorization of the last block A(1:M,II:N)
 | 
						|
*
 | 
						|
       IF (II.LE.N) THEN
 | 
						|
        CALL STPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ),
 | 
						|
     $                  LDA, T(1, CTR * M + 1), LDT,
 | 
						|
     $                  WORK, INFO )
 | 
						|
       END IF
 | 
						|
*
 | 
						|
      WORK( 1 ) = M * MB
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SLASWLQ
 | 
						|
*
 | 
						|
      END
 |