1078 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1078 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DTREVC
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DTREVC + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrevc.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrevc.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrevc.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | 
						|
*                          LDVR, MM, M, WORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          HOWMNY, SIDE
 | 
						|
*       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       LOGICAL            SELECT( * )
 | 
						|
*       DOUBLE PRECISION   T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
*      $                   WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DTREVC computes some or all of the right and/or left eigenvectors of
 | 
						|
*> a real upper quasi-triangular matrix T.
 | 
						|
*> Matrices of this type are produced by the Schur factorization of
 | 
						|
*> a real general matrix:  A = Q*T*Q**T, as computed by DHSEQR.
 | 
						|
*>
 | 
						|
*> The right eigenvector x and the left eigenvector y of T corresponding
 | 
						|
*> to an eigenvalue w are defined by:
 | 
						|
*>
 | 
						|
*>    T*x = w*x,     (y**H)*T = w*(y**H)
 | 
						|
*>
 | 
						|
*> where y**H denotes the conjugate transpose of y.
 | 
						|
*> The eigenvalues are not input to this routine, but are read directly
 | 
						|
*> from the diagonal blocks of T.
 | 
						|
*>
 | 
						|
*> This routine returns the matrices X and/or Y of right and left
 | 
						|
*> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
 | 
						|
*> input matrix.  If Q is the orthogonal factor that reduces a matrix
 | 
						|
*> A to Schur form T, then Q*X and Q*Y are the matrices of right and
 | 
						|
*> left eigenvectors of A.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'R':  compute right eigenvectors only;
 | 
						|
*>          = 'L':  compute left eigenvectors only;
 | 
						|
*>          = 'B':  compute both right and left eigenvectors.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] HOWMNY
 | 
						|
*> \verbatim
 | 
						|
*>          HOWMNY is CHARACTER*1
 | 
						|
*>          = 'A':  compute all right and/or left eigenvectors;
 | 
						|
*>          = 'B':  compute all right and/or left eigenvectors,
 | 
						|
*>                  backtransformed by the matrices in VR and/or VL;
 | 
						|
*>          = 'S':  compute selected right and/or left eigenvectors,
 | 
						|
*>                  as indicated by the logical array SELECT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] SELECT
 | 
						|
*> \verbatim
 | 
						|
*>          SELECT is LOGICAL array, dimension (N)
 | 
						|
*>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
 | 
						|
*>          computed.
 | 
						|
*>          If w(j) is a real eigenvalue, the corresponding real
 | 
						|
*>          eigenvector is computed if SELECT(j) is .TRUE..
 | 
						|
*>          If w(j) and w(j+1) are the real and imaginary parts of a
 | 
						|
*>          complex eigenvalue, the corresponding complex eigenvector is
 | 
						|
*>          computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
 | 
						|
*>          on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
 | 
						|
*>          .FALSE..
 | 
						|
*>          Not referenced if HOWMNY = 'A' or 'B'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix T. N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is DOUBLE PRECISION array, dimension (LDT,N)
 | 
						|
*>          The upper quasi-triangular matrix T in Schur canonical form.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T. LDT >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VL
 | 
						|
*> \verbatim
 | 
						|
*>          VL is DOUBLE PRECISION array, dimension (LDVL,MM)
 | 
						|
*>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
 | 
						|
*>          contain an N-by-N matrix Q (usually the orthogonal matrix Q
 | 
						|
*>          of Schur vectors returned by DHSEQR).
 | 
						|
*>          On exit, if SIDE = 'L' or 'B', VL contains:
 | 
						|
*>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
 | 
						|
*>          if HOWMNY = 'B', the matrix Q*Y;
 | 
						|
*>          if HOWMNY = 'S', the left eigenvectors of T specified by
 | 
						|
*>                           SELECT, stored consecutively in the columns
 | 
						|
*>                           of VL, in the same order as their
 | 
						|
*>                           eigenvalues.
 | 
						|
*>          A complex eigenvector corresponding to a complex eigenvalue
 | 
						|
*>          is stored in two consecutive columns, the first holding the
 | 
						|
*>          real part, and the second the imaginary part.
 | 
						|
*>          Not referenced if SIDE = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVL
 | 
						|
*> \verbatim
 | 
						|
*>          LDVL is INTEGER
 | 
						|
*>          The leading dimension of the array VL.  LDVL >= 1, and if
 | 
						|
*>          SIDE = 'L' or 'B', LDVL >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] VR
 | 
						|
*> \verbatim
 | 
						|
*>          VR is DOUBLE PRECISION array, dimension (LDVR,MM)
 | 
						|
*>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
 | 
						|
*>          contain an N-by-N matrix Q (usually the orthogonal matrix Q
 | 
						|
*>          of Schur vectors returned by DHSEQR).
 | 
						|
*>          On exit, if SIDE = 'R' or 'B', VR contains:
 | 
						|
*>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
 | 
						|
*>          if HOWMNY = 'B', the matrix Q*X;
 | 
						|
*>          if HOWMNY = 'S', the right eigenvectors of T specified by
 | 
						|
*>                           SELECT, stored consecutively in the columns
 | 
						|
*>                           of VR, in the same order as their
 | 
						|
*>                           eigenvalues.
 | 
						|
*>          A complex eigenvector corresponding to a complex eigenvalue
 | 
						|
*>          is stored in two consecutive columns, the first holding the
 | 
						|
*>          real part and the second the imaginary part.
 | 
						|
*>          Not referenced if SIDE = 'L'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDVR
 | 
						|
*> \verbatim
 | 
						|
*>          LDVR is INTEGER
 | 
						|
*>          The leading dimension of the array VR.  LDVR >= 1, and if
 | 
						|
*>          SIDE = 'R' or 'B', LDVR >= N.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MM
 | 
						|
*> \verbatim
 | 
						|
*>          MM is INTEGER
 | 
						|
*>          The number of columns in the arrays VL and/or VR. MM >= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of columns in the arrays VL and/or VR actually
 | 
						|
*>          used to store the eigenvectors.
 | 
						|
*>          If HOWMNY = 'A' or 'B', M is set to N.
 | 
						|
*>          Each selected real eigenvector occupies one column and each
 | 
						|
*>          selected complex eigenvector occupies two columns.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (3*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date November 2017
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The algorithm used in this program is basically backward (forward)
 | 
						|
*>  substitution, with scaling to make the the code robust against
 | 
						|
*>  possible overflow.
 | 
						|
*>
 | 
						|
*>  Each eigenvector is normalized so that the element of largest
 | 
						|
*>  magnitude has magnitude 1; here the magnitude of a complex number
 | 
						|
*>  (x,y) is taken to be |x| + |y|.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | 
						|
     $                   LDVR, MM, M, WORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.8.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     November 2017
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          HOWMNY, SIDE
 | 
						|
      INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      LOGICAL            SELECT( * )
 | 
						|
      DOUBLE PRECISION   T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | 
						|
     $                   WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            ALLV, BOTHV, LEFTV, OVER, PAIR, RIGHTV, SOMEV
 | 
						|
      INTEGER            I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI, N2
 | 
						|
      DOUBLE PRECISION   BETA, BIGNUM, EMAX, OVFL, REC, REMAX, SCALE,
 | 
						|
     $                   SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX, WI, WR,
 | 
						|
     $                   XNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DDOT, DLAMCH
 | 
						|
      EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DLABAD, DAXPY, DCOPY, DGEMV, DLALN2, DSCAL,
 | 
						|
     $                   XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      DOUBLE PRECISION   X( 2, 2 )
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Decode and test the input parameters
 | 
						|
*
 | 
						|
      BOTHV = LSAME( SIDE, 'B' )
 | 
						|
      RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
 | 
						|
      LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
 | 
						|
*
 | 
						|
      ALLV = LSAME( HOWMNY, 'A' )
 | 
						|
      OVER = LSAME( HOWMNY, 'B' )
 | 
						|
      SOMEV = LSAME( HOWMNY, 'S' )
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
 | 
						|
         INFO = -10
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Set M to the number of columns required to store the selected
 | 
						|
*        eigenvectors, standardize the array SELECT if necessary, and
 | 
						|
*        test MM.
 | 
						|
*
 | 
						|
         IF( SOMEV ) THEN
 | 
						|
            M = 0
 | 
						|
            PAIR = .FALSE.
 | 
						|
            DO 10 J = 1, N
 | 
						|
               IF( PAIR ) THEN
 | 
						|
                  PAIR = .FALSE.
 | 
						|
                  SELECT( J ) = .FALSE.
 | 
						|
               ELSE
 | 
						|
                  IF( J.LT.N ) THEN
 | 
						|
                     IF( T( J+1, J ).EQ.ZERO ) THEN
 | 
						|
                        IF( SELECT( J ) )
 | 
						|
     $                     M = M + 1
 | 
						|
                     ELSE
 | 
						|
                        PAIR = .TRUE.
 | 
						|
                        IF( SELECT( J ) .OR. SELECT( J+1 ) ) THEN
 | 
						|
                           SELECT( J ) = .TRUE.
 | 
						|
                           M = M + 2
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
                  ELSE
 | 
						|
                     IF( SELECT( N ) )
 | 
						|
     $                  M = M + 1
 | 
						|
                  END IF
 | 
						|
               END IF
 | 
						|
   10       CONTINUE
 | 
						|
         ELSE
 | 
						|
            M = N
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         IF( MM.LT.M ) THEN
 | 
						|
            INFO = -11
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DTREVC', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( N.EQ.0 )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
*     Set the constants to control overflow.
 | 
						|
*
 | 
						|
      UNFL = DLAMCH( 'Safe minimum' )
 | 
						|
      OVFL = ONE / UNFL
 | 
						|
      CALL DLABAD( UNFL, OVFL )
 | 
						|
      ULP = DLAMCH( 'Precision' )
 | 
						|
      SMLNUM = UNFL*( N / ULP )
 | 
						|
      BIGNUM = ( ONE-ULP ) / SMLNUM
 | 
						|
*
 | 
						|
*     Compute 1-norm of each column of strictly upper triangular
 | 
						|
*     part of T to control overflow in triangular solver.
 | 
						|
*
 | 
						|
      WORK( 1 ) = ZERO
 | 
						|
      DO 30 J = 2, N
 | 
						|
         WORK( J ) = ZERO
 | 
						|
         DO 20 I = 1, J - 1
 | 
						|
            WORK( J ) = WORK( J ) + ABS( T( I, J ) )
 | 
						|
   20    CONTINUE
 | 
						|
   30 CONTINUE
 | 
						|
*
 | 
						|
*     Index IP is used to specify the real or complex eigenvalue:
 | 
						|
*       IP = 0, real eigenvalue,
 | 
						|
*            1, first of conjugate complex pair: (wr,wi)
 | 
						|
*           -1, second of conjugate complex pair: (wr,wi)
 | 
						|
*
 | 
						|
      N2 = 2*N
 | 
						|
*
 | 
						|
      IF( RIGHTV ) THEN
 | 
						|
*
 | 
						|
*        Compute right eigenvectors.
 | 
						|
*
 | 
						|
         IP = 0
 | 
						|
         IS = M
 | 
						|
         DO 140 KI = N, 1, -1
 | 
						|
*
 | 
						|
            IF( IP.EQ.1 )
 | 
						|
     $         GO TO 130
 | 
						|
            IF( KI.EQ.1 )
 | 
						|
     $         GO TO 40
 | 
						|
            IF( T( KI, KI-1 ).EQ.ZERO )
 | 
						|
     $         GO TO 40
 | 
						|
            IP = -1
 | 
						|
*
 | 
						|
   40       CONTINUE
 | 
						|
            IF( SOMEV ) THEN
 | 
						|
               IF( IP.EQ.0 ) THEN
 | 
						|
                  IF( .NOT.SELECT( KI ) )
 | 
						|
     $               GO TO 130
 | 
						|
               ELSE
 | 
						|
                  IF( .NOT.SELECT( KI-1 ) )
 | 
						|
     $               GO TO 130
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Compute the KI-th eigenvalue (WR,WI).
 | 
						|
*
 | 
						|
            WR = T( KI, KI )
 | 
						|
            WI = ZERO
 | 
						|
            IF( IP.NE.0 )
 | 
						|
     $         WI = SQRT( ABS( T( KI, KI-1 ) ) )*
 | 
						|
     $              SQRT( ABS( T( KI-1, KI ) ) )
 | 
						|
            SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
 | 
						|
*
 | 
						|
            IF( IP.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*              Real right eigenvector
 | 
						|
*
 | 
						|
               WORK( KI+N ) = ONE
 | 
						|
*
 | 
						|
*              Form right-hand side
 | 
						|
*
 | 
						|
               DO 50 K = 1, KI - 1
 | 
						|
                  WORK( K+N ) = -T( K, KI )
 | 
						|
   50          CONTINUE
 | 
						|
*
 | 
						|
*              Solve the upper quasi-triangular system:
 | 
						|
*                 (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK.
 | 
						|
*
 | 
						|
               JNXT = KI - 1
 | 
						|
               DO 60 J = KI - 1, 1, -1
 | 
						|
                  IF( J.GT.JNXT )
 | 
						|
     $               GO TO 60
 | 
						|
                  J1 = J
 | 
						|
                  J2 = J
 | 
						|
                  JNXT = J - 1
 | 
						|
                  IF( J.GT.1 ) THEN
 | 
						|
                     IF( T( J, J-1 ).NE.ZERO ) THEN
 | 
						|
                        J1 = J - 1
 | 
						|
                        JNXT = J - 2
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( J1.EQ.J2 ) THEN
 | 
						|
*
 | 
						|
*                    1-by-1 diagonal block
 | 
						|
*
 | 
						|
                     CALL DLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
 | 
						|
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | 
						|
     $                            ZERO, X, 2, SCALE, XNORM, IERR )
 | 
						|
*
 | 
						|
*                    Scale X(1,1) to avoid overflow when updating
 | 
						|
*                    the right-hand side.
 | 
						|
*
 | 
						|
                     IF( XNORM.GT.ONE ) THEN
 | 
						|
                        IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
 | 
						|
                           X( 1, 1 ) = X( 1, 1 ) / XNORM
 | 
						|
                           SCALE = SCALE / XNORM
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Scale if necessary
 | 
						|
*
 | 
						|
                     IF( SCALE.NE.ONE )
 | 
						|
     $                  CALL DSCAL( KI, SCALE, WORK( 1+N ), 1 )
 | 
						|
                     WORK( J+N ) = X( 1, 1 )
 | 
						|
*
 | 
						|
*                    Update right-hand side
 | 
						|
*
 | 
						|
                     CALL DAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
 | 
						|
     $                           WORK( 1+N ), 1 )
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    2-by-2 diagonal block
 | 
						|
*
 | 
						|
                     CALL DLALN2( .FALSE., 2, 1, SMIN, ONE,
 | 
						|
     $                            T( J-1, J-1 ), LDT, ONE, ONE,
 | 
						|
     $                            WORK( J-1+N ), N, WR, ZERO, X, 2,
 | 
						|
     $                            SCALE, XNORM, IERR )
 | 
						|
*
 | 
						|
*                    Scale X(1,1) and X(2,1) to avoid overflow when
 | 
						|
*                    updating the right-hand side.
 | 
						|
*
 | 
						|
                     IF( XNORM.GT.ONE ) THEN
 | 
						|
                        BETA = MAX( WORK( J-1 ), WORK( J ) )
 | 
						|
                        IF( BETA.GT.BIGNUM / XNORM ) THEN
 | 
						|
                           X( 1, 1 ) = X( 1, 1 ) / XNORM
 | 
						|
                           X( 2, 1 ) = X( 2, 1 ) / XNORM
 | 
						|
                           SCALE = SCALE / XNORM
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Scale if necessary
 | 
						|
*
 | 
						|
                     IF( SCALE.NE.ONE )
 | 
						|
     $                  CALL DSCAL( KI, SCALE, WORK( 1+N ), 1 )
 | 
						|
                     WORK( J-1+N ) = X( 1, 1 )
 | 
						|
                     WORK( J+N ) = X( 2, 1 )
 | 
						|
*
 | 
						|
*                    Update right-hand side
 | 
						|
*
 | 
						|
                     CALL DAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
 | 
						|
     $                           WORK( 1+N ), 1 )
 | 
						|
                     CALL DAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
 | 
						|
     $                           WORK( 1+N ), 1 )
 | 
						|
                  END IF
 | 
						|
   60          CONTINUE
 | 
						|
*
 | 
						|
*              Copy the vector x or Q*x to VR and normalize.
 | 
						|
*
 | 
						|
               IF( .NOT.OVER ) THEN
 | 
						|
                  CALL DCOPY( KI, WORK( 1+N ), 1, VR( 1, IS ), 1 )
 | 
						|
*
 | 
						|
                  II = IDAMAX( KI, VR( 1, IS ), 1 )
 | 
						|
                  REMAX = ONE / ABS( VR( II, IS ) )
 | 
						|
                  CALL DSCAL( KI, REMAX, VR( 1, IS ), 1 )
 | 
						|
*
 | 
						|
                  DO 70 K = KI + 1, N
 | 
						|
                     VR( K, IS ) = ZERO
 | 
						|
   70             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  IF( KI.GT.1 )
 | 
						|
     $               CALL DGEMV( 'N', N, KI-1, ONE, VR, LDVR,
 | 
						|
     $                           WORK( 1+N ), 1, WORK( KI+N ),
 | 
						|
     $                           VR( 1, KI ), 1 )
 | 
						|
*
 | 
						|
                  II = IDAMAX( N, VR( 1, KI ), 1 )
 | 
						|
                  REMAX = ONE / ABS( VR( II, KI ) )
 | 
						|
                  CALL DSCAL( N, REMAX, VR( 1, KI ), 1 )
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Complex right eigenvector.
 | 
						|
*
 | 
						|
*              Initial solve
 | 
						|
*                [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0.
 | 
						|
*                [ (T(KI,KI-1)   T(KI,KI)   )               ]
 | 
						|
*
 | 
						|
               IF( ABS( T( KI-1, KI ) ).GE.ABS( T( KI, KI-1 ) ) ) THEN
 | 
						|
                  WORK( KI-1+N ) = ONE
 | 
						|
                  WORK( KI+N2 ) = WI / T( KI-1, KI )
 | 
						|
               ELSE
 | 
						|
                  WORK( KI-1+N ) = -WI / T( KI, KI-1 )
 | 
						|
                  WORK( KI+N2 ) = ONE
 | 
						|
               END IF
 | 
						|
               WORK( KI+N ) = ZERO
 | 
						|
               WORK( KI-1+N2 ) = ZERO
 | 
						|
*
 | 
						|
*              Form right-hand side
 | 
						|
*
 | 
						|
               DO 80 K = 1, KI - 2
 | 
						|
                  WORK( K+N ) = -WORK( KI-1+N )*T( K, KI-1 )
 | 
						|
                  WORK( K+N2 ) = -WORK( KI+N2 )*T( K, KI )
 | 
						|
   80          CONTINUE
 | 
						|
*
 | 
						|
*              Solve upper quasi-triangular system:
 | 
						|
*              (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2)
 | 
						|
*
 | 
						|
               JNXT = KI - 2
 | 
						|
               DO 90 J = KI - 2, 1, -1
 | 
						|
                  IF( J.GT.JNXT )
 | 
						|
     $               GO TO 90
 | 
						|
                  J1 = J
 | 
						|
                  J2 = J
 | 
						|
                  JNXT = J - 1
 | 
						|
                  IF( J.GT.1 ) THEN
 | 
						|
                     IF( T( J, J-1 ).NE.ZERO ) THEN
 | 
						|
                        J1 = J - 1
 | 
						|
                        JNXT = J - 2
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( J1.EQ.J2 ) THEN
 | 
						|
*
 | 
						|
*                    1-by-1 diagonal block
 | 
						|
*
 | 
						|
                     CALL DLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
 | 
						|
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR, WI,
 | 
						|
     $                            X, 2, SCALE, XNORM, IERR )
 | 
						|
*
 | 
						|
*                    Scale X(1,1) and X(1,2) to avoid overflow when
 | 
						|
*                    updating the right-hand side.
 | 
						|
*
 | 
						|
                     IF( XNORM.GT.ONE ) THEN
 | 
						|
                        IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
 | 
						|
                           X( 1, 1 ) = X( 1, 1 ) / XNORM
 | 
						|
                           X( 1, 2 ) = X( 1, 2 ) / XNORM
 | 
						|
                           SCALE = SCALE / XNORM
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Scale if necessary
 | 
						|
*
 | 
						|
                     IF( SCALE.NE.ONE ) THEN
 | 
						|
                        CALL DSCAL( KI, SCALE, WORK( 1+N ), 1 )
 | 
						|
                        CALL DSCAL( KI, SCALE, WORK( 1+N2 ), 1 )
 | 
						|
                     END IF
 | 
						|
                     WORK( J+N ) = X( 1, 1 )
 | 
						|
                     WORK( J+N2 ) = X( 1, 2 )
 | 
						|
*
 | 
						|
*                    Update the right-hand side
 | 
						|
*
 | 
						|
                     CALL DAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
 | 
						|
     $                           WORK( 1+N ), 1 )
 | 
						|
                     CALL DAXPY( J-1, -X( 1, 2 ), T( 1, J ), 1,
 | 
						|
     $                           WORK( 1+N2 ), 1 )
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    2-by-2 diagonal block
 | 
						|
*
 | 
						|
                     CALL DLALN2( .FALSE., 2, 2, SMIN, ONE,
 | 
						|
     $                            T( J-1, J-1 ), LDT, ONE, ONE,
 | 
						|
     $                            WORK( J-1+N ), N, WR, WI, X, 2, SCALE,
 | 
						|
     $                            XNORM, IERR )
 | 
						|
*
 | 
						|
*                    Scale X to avoid overflow when updating
 | 
						|
*                    the right-hand side.
 | 
						|
*
 | 
						|
                     IF( XNORM.GT.ONE ) THEN
 | 
						|
                        BETA = MAX( WORK( J-1 ), WORK( J ) )
 | 
						|
                        IF( BETA.GT.BIGNUM / XNORM ) THEN
 | 
						|
                           REC = ONE / XNORM
 | 
						|
                           X( 1, 1 ) = X( 1, 1 )*REC
 | 
						|
                           X( 1, 2 ) = X( 1, 2 )*REC
 | 
						|
                           X( 2, 1 ) = X( 2, 1 )*REC
 | 
						|
                           X( 2, 2 ) = X( 2, 2 )*REC
 | 
						|
                           SCALE = SCALE*REC
 | 
						|
                        END IF
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
*                    Scale if necessary
 | 
						|
*
 | 
						|
                     IF( SCALE.NE.ONE ) THEN
 | 
						|
                        CALL DSCAL( KI, SCALE, WORK( 1+N ), 1 )
 | 
						|
                        CALL DSCAL( KI, SCALE, WORK( 1+N2 ), 1 )
 | 
						|
                     END IF
 | 
						|
                     WORK( J-1+N ) = X( 1, 1 )
 | 
						|
                     WORK( J+N ) = X( 2, 1 )
 | 
						|
                     WORK( J-1+N2 ) = X( 1, 2 )
 | 
						|
                     WORK( J+N2 ) = X( 2, 2 )
 | 
						|
*
 | 
						|
*                    Update the right-hand side
 | 
						|
*
 | 
						|
                     CALL DAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
 | 
						|
     $                           WORK( 1+N ), 1 )
 | 
						|
                     CALL DAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
 | 
						|
     $                           WORK( 1+N ), 1 )
 | 
						|
                     CALL DAXPY( J-2, -X( 1, 2 ), T( 1, J-1 ), 1,
 | 
						|
     $                           WORK( 1+N2 ), 1 )
 | 
						|
                     CALL DAXPY( J-2, -X( 2, 2 ), T( 1, J ), 1,
 | 
						|
     $                           WORK( 1+N2 ), 1 )
 | 
						|
                  END IF
 | 
						|
   90          CONTINUE
 | 
						|
*
 | 
						|
*              Copy the vector x or Q*x to VR and normalize.
 | 
						|
*
 | 
						|
               IF( .NOT.OVER ) THEN
 | 
						|
                  CALL DCOPY( KI, WORK( 1+N ), 1, VR( 1, IS-1 ), 1 )
 | 
						|
                  CALL DCOPY( KI, WORK( 1+N2 ), 1, VR( 1, IS ), 1 )
 | 
						|
*
 | 
						|
                  EMAX = ZERO
 | 
						|
                  DO 100 K = 1, KI
 | 
						|
                     EMAX = MAX( EMAX, ABS( VR( K, IS-1 ) )+
 | 
						|
     $                      ABS( VR( K, IS ) ) )
 | 
						|
  100             CONTINUE
 | 
						|
*
 | 
						|
                  REMAX = ONE / EMAX
 | 
						|
                  CALL DSCAL( KI, REMAX, VR( 1, IS-1 ), 1 )
 | 
						|
                  CALL DSCAL( KI, REMAX, VR( 1, IS ), 1 )
 | 
						|
*
 | 
						|
                  DO 110 K = KI + 1, N
 | 
						|
                     VR( K, IS-1 ) = ZERO
 | 
						|
                     VR( K, IS ) = ZERO
 | 
						|
  110             CONTINUE
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
                  IF( KI.GT.2 ) THEN
 | 
						|
                     CALL DGEMV( 'N', N, KI-2, ONE, VR, LDVR,
 | 
						|
     $                           WORK( 1+N ), 1, WORK( KI-1+N ),
 | 
						|
     $                           VR( 1, KI-1 ), 1 )
 | 
						|
                     CALL DGEMV( 'N', N, KI-2, ONE, VR, LDVR,
 | 
						|
     $                           WORK( 1+N2 ), 1, WORK( KI+N2 ),
 | 
						|
     $                           VR( 1, KI ), 1 )
 | 
						|
                  ELSE
 | 
						|
                     CALL DSCAL( N, WORK( KI-1+N ), VR( 1, KI-1 ), 1 )
 | 
						|
                     CALL DSCAL( N, WORK( KI+N2 ), VR( 1, KI ), 1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  EMAX = ZERO
 | 
						|
                  DO 120 K = 1, N
 | 
						|
                     EMAX = MAX( EMAX, ABS( VR( K, KI-1 ) )+
 | 
						|
     $                      ABS( VR( K, KI ) ) )
 | 
						|
  120             CONTINUE
 | 
						|
                  REMAX = ONE / EMAX
 | 
						|
                  CALL DSCAL( N, REMAX, VR( 1, KI-1 ), 1 )
 | 
						|
                  CALL DSCAL( N, REMAX, VR( 1, KI ), 1 )
 | 
						|
               END IF
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IS = IS - 1
 | 
						|
            IF( IP.NE.0 )
 | 
						|
     $         IS = IS - 1
 | 
						|
  130       CONTINUE
 | 
						|
            IF( IP.EQ.1 )
 | 
						|
     $         IP = 0
 | 
						|
            IF( IP.EQ.-1 )
 | 
						|
     $         IP = 1
 | 
						|
  140    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      IF( LEFTV ) THEN
 | 
						|
*
 | 
						|
*        Compute left eigenvectors.
 | 
						|
*
 | 
						|
         IP = 0
 | 
						|
         IS = 1
 | 
						|
         DO 260 KI = 1, N
 | 
						|
*
 | 
						|
            IF( IP.EQ.-1 )
 | 
						|
     $         GO TO 250
 | 
						|
            IF( KI.EQ.N )
 | 
						|
     $         GO TO 150
 | 
						|
            IF( T( KI+1, KI ).EQ.ZERO )
 | 
						|
     $         GO TO 150
 | 
						|
            IP = 1
 | 
						|
*
 | 
						|
  150       CONTINUE
 | 
						|
            IF( SOMEV ) THEN
 | 
						|
               IF( .NOT.SELECT( KI ) )
 | 
						|
     $            GO TO 250
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Compute the KI-th eigenvalue (WR,WI).
 | 
						|
*
 | 
						|
            WR = T( KI, KI )
 | 
						|
            WI = ZERO
 | 
						|
            IF( IP.NE.0 )
 | 
						|
     $         WI = SQRT( ABS( T( KI, KI+1 ) ) )*
 | 
						|
     $              SQRT( ABS( T( KI+1, KI ) ) )
 | 
						|
            SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
 | 
						|
*
 | 
						|
            IF( IP.EQ.0 ) THEN
 | 
						|
*
 | 
						|
*              Real left eigenvector.
 | 
						|
*
 | 
						|
               WORK( KI+N ) = ONE
 | 
						|
*
 | 
						|
*              Form right-hand side
 | 
						|
*
 | 
						|
               DO 160 K = KI + 1, N
 | 
						|
                  WORK( K+N ) = -T( KI, K )
 | 
						|
  160          CONTINUE
 | 
						|
*
 | 
						|
*              Solve the quasi-triangular system:
 | 
						|
*                 (T(KI+1:N,KI+1:N) - WR)**T*X = SCALE*WORK
 | 
						|
*
 | 
						|
               VMAX = ONE
 | 
						|
               VCRIT = BIGNUM
 | 
						|
*
 | 
						|
               JNXT = KI + 1
 | 
						|
               DO 170 J = KI + 1, N
 | 
						|
                  IF( J.LT.JNXT )
 | 
						|
     $               GO TO 170
 | 
						|
                  J1 = J
 | 
						|
                  J2 = J
 | 
						|
                  JNXT = J + 1
 | 
						|
                  IF( J.LT.N ) THEN
 | 
						|
                     IF( T( J+1, J ).NE.ZERO ) THEN
 | 
						|
                        J2 = J + 1
 | 
						|
                        JNXT = J + 2
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( J1.EQ.J2 ) THEN
 | 
						|
*
 | 
						|
*                    1-by-1 diagonal block
 | 
						|
*
 | 
						|
*                    Scale if necessary to avoid overflow when forming
 | 
						|
*                    the right-hand side.
 | 
						|
*
 | 
						|
                     IF( WORK( J ).GT.VCRIT ) THEN
 | 
						|
                        REC = ONE / VMAX
 | 
						|
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
 | 
						|
                        VMAX = ONE
 | 
						|
                        VCRIT = BIGNUM
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     WORK( J+N ) = WORK( J+N ) -
 | 
						|
     $                             DDOT( J-KI-1, T( KI+1, J ), 1,
 | 
						|
     $                             WORK( KI+1+N ), 1 )
 | 
						|
*
 | 
						|
*                    Solve (T(J,J)-WR)**T*X = WORK
 | 
						|
*
 | 
						|
                     CALL DLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
 | 
						|
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | 
						|
     $                            ZERO, X, 2, SCALE, XNORM, IERR )
 | 
						|
*
 | 
						|
*                    Scale if necessary
 | 
						|
*
 | 
						|
                     IF( SCALE.NE.ONE )
 | 
						|
     $                  CALL DSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
 | 
						|
                     WORK( J+N ) = X( 1, 1 )
 | 
						|
                     VMAX = MAX( ABS( WORK( J+N ) ), VMAX )
 | 
						|
                     VCRIT = BIGNUM / VMAX
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    2-by-2 diagonal block
 | 
						|
*
 | 
						|
*                    Scale if necessary to avoid overflow when forming
 | 
						|
*                    the right-hand side.
 | 
						|
*
 | 
						|
                     BETA = MAX( WORK( J ), WORK( J+1 ) )
 | 
						|
                     IF( BETA.GT.VCRIT ) THEN
 | 
						|
                        REC = ONE / VMAX
 | 
						|
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
 | 
						|
                        VMAX = ONE
 | 
						|
                        VCRIT = BIGNUM
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     WORK( J+N ) = WORK( J+N ) -
 | 
						|
     $                             DDOT( J-KI-1, T( KI+1, J ), 1,
 | 
						|
     $                             WORK( KI+1+N ), 1 )
 | 
						|
*
 | 
						|
                     WORK( J+1+N ) = WORK( J+1+N ) -
 | 
						|
     $                               DDOT( J-KI-1, T( KI+1, J+1 ), 1,
 | 
						|
     $                               WORK( KI+1+N ), 1 )
 | 
						|
*
 | 
						|
*                    Solve
 | 
						|
*                      [T(J,J)-WR   T(J,J+1)     ]**T * X = SCALE*( WORK1 )
 | 
						|
*                      [T(J+1,J)    T(J+1,J+1)-WR]                ( WORK2 )
 | 
						|
*
 | 
						|
                     CALL DLALN2( .TRUE., 2, 1, SMIN, ONE, T( J, J ),
 | 
						|
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | 
						|
     $                            ZERO, X, 2, SCALE, XNORM, IERR )
 | 
						|
*
 | 
						|
*                    Scale if necessary
 | 
						|
*
 | 
						|
                     IF( SCALE.NE.ONE )
 | 
						|
     $                  CALL DSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
 | 
						|
                     WORK( J+N ) = X( 1, 1 )
 | 
						|
                     WORK( J+1+N ) = X( 2, 1 )
 | 
						|
*
 | 
						|
                     VMAX = MAX( ABS( WORK( J+N ) ),
 | 
						|
     $                      ABS( WORK( J+1+N ) ), VMAX )
 | 
						|
                     VCRIT = BIGNUM / VMAX
 | 
						|
*
 | 
						|
                  END IF
 | 
						|
  170          CONTINUE
 | 
						|
*
 | 
						|
*              Copy the vector x or Q*x to VL and normalize.
 | 
						|
*
 | 
						|
               IF( .NOT.OVER ) THEN
 | 
						|
                  CALL DCOPY( N-KI+1, WORK( KI+N ), 1, VL( KI, IS ), 1 )
 | 
						|
*
 | 
						|
                  II = IDAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
 | 
						|
                  REMAX = ONE / ABS( VL( II, IS ) )
 | 
						|
                  CALL DSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
 | 
						|
*
 | 
						|
                  DO 180 K = 1, KI - 1
 | 
						|
                     VL( K, IS ) = ZERO
 | 
						|
  180             CONTINUE
 | 
						|
*
 | 
						|
               ELSE
 | 
						|
*
 | 
						|
                  IF( KI.LT.N )
 | 
						|
     $               CALL DGEMV( 'N', N, N-KI, ONE, VL( 1, KI+1 ), LDVL,
 | 
						|
     $                           WORK( KI+1+N ), 1, WORK( KI+N ),
 | 
						|
     $                           VL( 1, KI ), 1 )
 | 
						|
*
 | 
						|
                  II = IDAMAX( N, VL( 1, KI ), 1 )
 | 
						|
                  REMAX = ONE / ABS( VL( II, KI ) )
 | 
						|
                  CALL DSCAL( N, REMAX, VL( 1, KI ), 1 )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            ELSE
 | 
						|
*
 | 
						|
*              Complex left eigenvector.
 | 
						|
*
 | 
						|
*               Initial solve:
 | 
						|
*                 ((T(KI,KI)    T(KI,KI+1) )**T - (WR - I* WI))*X = 0.
 | 
						|
*                 ((T(KI+1,KI) T(KI+1,KI+1))                )
 | 
						|
*
 | 
						|
               IF( ABS( T( KI, KI+1 ) ).GE.ABS( T( KI+1, KI ) ) ) THEN
 | 
						|
                  WORK( KI+N ) = WI / T( KI, KI+1 )
 | 
						|
                  WORK( KI+1+N2 ) = ONE
 | 
						|
               ELSE
 | 
						|
                  WORK( KI+N ) = ONE
 | 
						|
                  WORK( KI+1+N2 ) = -WI / T( KI+1, KI )
 | 
						|
               END IF
 | 
						|
               WORK( KI+1+N ) = ZERO
 | 
						|
               WORK( KI+N2 ) = ZERO
 | 
						|
*
 | 
						|
*              Form right-hand side
 | 
						|
*
 | 
						|
               DO 190 K = KI + 2, N
 | 
						|
                  WORK( K+N ) = -WORK( KI+N )*T( KI, K )
 | 
						|
                  WORK( K+N2 ) = -WORK( KI+1+N2 )*T( KI+1, K )
 | 
						|
  190          CONTINUE
 | 
						|
*
 | 
						|
*              Solve complex quasi-triangular system:
 | 
						|
*              ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2
 | 
						|
*
 | 
						|
               VMAX = ONE
 | 
						|
               VCRIT = BIGNUM
 | 
						|
*
 | 
						|
               JNXT = KI + 2
 | 
						|
               DO 200 J = KI + 2, N
 | 
						|
                  IF( J.LT.JNXT )
 | 
						|
     $               GO TO 200
 | 
						|
                  J1 = J
 | 
						|
                  J2 = J
 | 
						|
                  JNXT = J + 1
 | 
						|
                  IF( J.LT.N ) THEN
 | 
						|
                     IF( T( J+1, J ).NE.ZERO ) THEN
 | 
						|
                        J2 = J + 1
 | 
						|
                        JNXT = J + 2
 | 
						|
                     END IF
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  IF( J1.EQ.J2 ) THEN
 | 
						|
*
 | 
						|
*                    1-by-1 diagonal block
 | 
						|
*
 | 
						|
*                    Scale if necessary to avoid overflow when
 | 
						|
*                    forming the right-hand side elements.
 | 
						|
*
 | 
						|
                     IF( WORK( J ).GT.VCRIT ) THEN
 | 
						|
                        REC = ONE / VMAX
 | 
						|
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
 | 
						|
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N2 ), 1 )
 | 
						|
                        VMAX = ONE
 | 
						|
                        VCRIT = BIGNUM
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     WORK( J+N ) = WORK( J+N ) -
 | 
						|
     $                             DDOT( J-KI-2, T( KI+2, J ), 1,
 | 
						|
     $                             WORK( KI+2+N ), 1 )
 | 
						|
                     WORK( J+N2 ) = WORK( J+N2 ) -
 | 
						|
     $                              DDOT( J-KI-2, T( KI+2, J ), 1,
 | 
						|
     $                              WORK( KI+2+N2 ), 1 )
 | 
						|
*
 | 
						|
*                    Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2
 | 
						|
*
 | 
						|
                     CALL DLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
 | 
						|
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | 
						|
     $                            -WI, X, 2, SCALE, XNORM, IERR )
 | 
						|
*
 | 
						|
*                    Scale if necessary
 | 
						|
*
 | 
						|
                     IF( SCALE.NE.ONE ) THEN
 | 
						|
                        CALL DSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
 | 
						|
                        CALL DSCAL( N-KI+1, SCALE, WORK( KI+N2 ), 1 )
 | 
						|
                     END IF
 | 
						|
                     WORK( J+N ) = X( 1, 1 )
 | 
						|
                     WORK( J+N2 ) = X( 1, 2 )
 | 
						|
                     VMAX = MAX( ABS( WORK( J+N ) ),
 | 
						|
     $                      ABS( WORK( J+N2 ) ), VMAX )
 | 
						|
                     VCRIT = BIGNUM / VMAX
 | 
						|
*
 | 
						|
                  ELSE
 | 
						|
*
 | 
						|
*                    2-by-2 diagonal block
 | 
						|
*
 | 
						|
*                    Scale if necessary to avoid overflow when forming
 | 
						|
*                    the right-hand side elements.
 | 
						|
*
 | 
						|
                     BETA = MAX( WORK( J ), WORK( J+1 ) )
 | 
						|
                     IF( BETA.GT.VCRIT ) THEN
 | 
						|
                        REC = ONE / VMAX
 | 
						|
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
 | 
						|
                        CALL DSCAL( N-KI+1, REC, WORK( KI+N2 ), 1 )
 | 
						|
                        VMAX = ONE
 | 
						|
                        VCRIT = BIGNUM
 | 
						|
                     END IF
 | 
						|
*
 | 
						|
                     WORK( J+N ) = WORK( J+N ) -
 | 
						|
     $                             DDOT( J-KI-2, T( KI+2, J ), 1,
 | 
						|
     $                             WORK( KI+2+N ), 1 )
 | 
						|
*
 | 
						|
                     WORK( J+N2 ) = WORK( J+N2 ) -
 | 
						|
     $                              DDOT( J-KI-2, T( KI+2, J ), 1,
 | 
						|
     $                              WORK( KI+2+N2 ), 1 )
 | 
						|
*
 | 
						|
                     WORK( J+1+N ) = WORK( J+1+N ) -
 | 
						|
     $                               DDOT( J-KI-2, T( KI+2, J+1 ), 1,
 | 
						|
     $                               WORK( KI+2+N ), 1 )
 | 
						|
*
 | 
						|
                     WORK( J+1+N2 ) = WORK( J+1+N2 ) -
 | 
						|
     $                                DDOT( J-KI-2, T( KI+2, J+1 ), 1,
 | 
						|
     $                                WORK( KI+2+N2 ), 1 )
 | 
						|
*
 | 
						|
*                    Solve 2-by-2 complex linear equation
 | 
						|
*                      ([T(j,j)   T(j,j+1)  ]**T-(wr-i*wi)*I)*X = SCALE*B
 | 
						|
*                      ([T(j+1,j) T(j+1,j+1)]               )
 | 
						|
*
 | 
						|
                     CALL DLALN2( .TRUE., 2, 2, SMIN, ONE, T( J, J ),
 | 
						|
     $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | 
						|
     $                            -WI, X, 2, SCALE, XNORM, IERR )
 | 
						|
*
 | 
						|
*                    Scale if necessary
 | 
						|
*
 | 
						|
                     IF( SCALE.NE.ONE ) THEN
 | 
						|
                        CALL DSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
 | 
						|
                        CALL DSCAL( N-KI+1, SCALE, WORK( KI+N2 ), 1 )
 | 
						|
                     END IF
 | 
						|
                     WORK( J+N ) = X( 1, 1 )
 | 
						|
                     WORK( J+N2 ) = X( 1, 2 )
 | 
						|
                     WORK( J+1+N ) = X( 2, 1 )
 | 
						|
                     WORK( J+1+N2 ) = X( 2, 2 )
 | 
						|
                     VMAX = MAX( ABS( X( 1, 1 ) ), ABS( X( 1, 2 ) ),
 | 
						|
     $                      ABS( X( 2, 1 ) ), ABS( X( 2, 2 ) ), VMAX )
 | 
						|
                     VCRIT = BIGNUM / VMAX
 | 
						|
*
 | 
						|
                  END IF
 | 
						|
  200          CONTINUE
 | 
						|
*
 | 
						|
*              Copy the vector x or Q*x to VL and normalize.
 | 
						|
*
 | 
						|
               IF( .NOT.OVER ) THEN
 | 
						|
                  CALL DCOPY( N-KI+1, WORK( KI+N ), 1, VL( KI, IS ), 1 )
 | 
						|
                  CALL DCOPY( N-KI+1, WORK( KI+N2 ), 1, VL( KI, IS+1 ),
 | 
						|
     $                        1 )
 | 
						|
*
 | 
						|
                  EMAX = ZERO
 | 
						|
                  DO 220 K = KI, N
 | 
						|
                     EMAX = MAX( EMAX, ABS( VL( K, IS ) )+
 | 
						|
     $                      ABS( VL( K, IS+1 ) ) )
 | 
						|
  220             CONTINUE
 | 
						|
                  REMAX = ONE / EMAX
 | 
						|
                  CALL DSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
 | 
						|
                  CALL DSCAL( N-KI+1, REMAX, VL( KI, IS+1 ), 1 )
 | 
						|
*
 | 
						|
                  DO 230 K = 1, KI - 1
 | 
						|
                     VL( K, IS ) = ZERO
 | 
						|
                     VL( K, IS+1 ) = ZERO
 | 
						|
  230             CONTINUE
 | 
						|
               ELSE
 | 
						|
                  IF( KI.LT.N-1 ) THEN
 | 
						|
                     CALL DGEMV( 'N', N, N-KI-1, ONE, VL( 1, KI+2 ),
 | 
						|
     $                           LDVL, WORK( KI+2+N ), 1, WORK( KI+N ),
 | 
						|
     $                           VL( 1, KI ), 1 )
 | 
						|
                     CALL DGEMV( 'N', N, N-KI-1, ONE, VL( 1, KI+2 ),
 | 
						|
     $                           LDVL, WORK( KI+2+N2 ), 1,
 | 
						|
     $                           WORK( KI+1+N2 ), VL( 1, KI+1 ), 1 )
 | 
						|
                  ELSE
 | 
						|
                     CALL DSCAL( N, WORK( KI+N ), VL( 1, KI ), 1 )
 | 
						|
                     CALL DSCAL( N, WORK( KI+1+N2 ), VL( 1, KI+1 ), 1 )
 | 
						|
                  END IF
 | 
						|
*
 | 
						|
                  EMAX = ZERO
 | 
						|
                  DO 240 K = 1, N
 | 
						|
                     EMAX = MAX( EMAX, ABS( VL( K, KI ) )+
 | 
						|
     $                      ABS( VL( K, KI+1 ) ) )
 | 
						|
  240             CONTINUE
 | 
						|
                  REMAX = ONE / EMAX
 | 
						|
                  CALL DSCAL( N, REMAX, VL( 1, KI ), 1 )
 | 
						|
                  CALL DSCAL( N, REMAX, VL( 1, KI+1 ), 1 )
 | 
						|
*
 | 
						|
               END IF
 | 
						|
*
 | 
						|
            END IF
 | 
						|
*
 | 
						|
            IS = IS + 1
 | 
						|
            IF( IP.NE.0 )
 | 
						|
     $         IS = IS + 1
 | 
						|
  250       CONTINUE
 | 
						|
            IF( IP.EQ.-1 )
 | 
						|
     $         IP = 0
 | 
						|
            IF( IP.EQ.1 )
 | 
						|
     $         IP = -1
 | 
						|
*
 | 
						|
  260    CONTINUE
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DTREVC
 | 
						|
*
 | 
						|
      END
 |