271 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			271 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DTPLQT
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DTPQRT + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtplqt.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtplqt.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtplqt.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DTPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK,
 | 
						|
*                          INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER           INFO, LDA, LDB, LDT, N, M, L, MB
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION  A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DTPLQT computes a blocked LQ factorization of a real
 | 
						|
*> "triangular-pentagonal" matrix C, which is composed of a
 | 
						|
*> triangular block A and pentagonal block B, using the compact
 | 
						|
*> WY representation for Q.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix B, and the order of the
 | 
						|
*>          triangular matrix A.
 | 
						|
*>          M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix B.
 | 
						|
*>          N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is INTEGER
 | 
						|
*>          The number of rows of the lower trapezoidal part of B.
 | 
						|
*>          MIN(M,N) >= L >= 0.  See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] MB
 | 
						|
*> \verbatim
 | 
						|
*>          MB is INTEGER
 | 
						|
*>          The block size to be used in the blocked QR.  M >= MB >= 1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is DOUBLE PRECISION array, dimension (LDA,M)
 | 
						|
*>          On entry, the lower triangular M-by-M matrix A.
 | 
						|
*>          On exit, the elements on and below the diagonal of the array
 | 
						|
*>          contain the lower triangular matrix L.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is DOUBLE PRECISION array, dimension (LDB,N)
 | 
						|
*>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns
 | 
						|
*>          are rectangular, and the last L columns are lower trapezoidal.
 | 
						|
*>          On exit, B contains the pentagonal matrix V.  See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B.  LDB >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] T
 | 
						|
*> \verbatim
 | 
						|
*>          T is DOUBLE PRECISION array, dimension (LDT,N)
 | 
						|
*>          The lower triangular block reflectors stored in compact form
 | 
						|
*>          as a sequence of upper triangular blocks.  See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDT
 | 
						|
*> \verbatim
 | 
						|
*>          LDT is INTEGER
 | 
						|
*>          The leading dimension of the array T.  LDT >= MB.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (MB*M)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date June 2017
 | 
						|
*
 | 
						|
*> \ingroup doubleOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The input matrix C is a M-by-(M+N) matrix
 | 
						|
*>
 | 
						|
*>               C = [ A ] [ B ]
 | 
						|
*>
 | 
						|
*>
 | 
						|
*>  where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
 | 
						|
*>  matrix consisting of a M-by-(N-L) rectangular matrix B1 on left of a M-by-L
 | 
						|
*>  upper trapezoidal matrix B2:
 | 
						|
*>          [ B ] = [ B1 ] [ B2 ]
 | 
						|
*>                   [ B1 ]  <- M-by-(N-L) rectangular
 | 
						|
*>                   [ B2 ]  <-     M-by-L lower trapezoidal.
 | 
						|
*>
 | 
						|
*>  The lower trapezoidal matrix B2 consists of the first L columns of a
 | 
						|
*>  M-by-M lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
 | 
						|
*>  B is rectangular M-by-N; if M=L=N, B is lower triangular.
 | 
						|
*>
 | 
						|
*>  The matrix W stores the elementary reflectors H(i) in the i-th row
 | 
						|
*>  above the diagonal (of A) in the M-by-(M+N) input matrix C
 | 
						|
*>            [ C ] = [ A ] [ B ]
 | 
						|
*>                   [ A ]  <- lower triangular M-by-M
 | 
						|
*>                   [ B ]  <- M-by-N pentagonal
 | 
						|
*>
 | 
						|
*>  so that W can be represented as
 | 
						|
*>            [ W ] = [ I ] [ V ]
 | 
						|
*>                   [ I ]  <- identity, M-by-M
 | 
						|
*>                   [ V ]  <- M-by-N, same form as B.
 | 
						|
*>
 | 
						|
*>  Thus, all of information needed for W is contained on exit in B, which
 | 
						|
*>  we call V above.  Note that V has the same form as B; that is,
 | 
						|
*>            [ V ] = [ V1 ] [ V2 ]
 | 
						|
*>                   [ V1 ] <- M-by-(N-L) rectangular
 | 
						|
*>                   [ V2 ] <-     M-by-L lower trapezoidal.
 | 
						|
*>
 | 
						|
*>  The rows of V represent the vectors which define the H(i)'s.
 | 
						|
*>
 | 
						|
*>  The number of blocks is B = ceiling(M/MB), where each
 | 
						|
*>  block is of order MB except for the last block, which is of order
 | 
						|
*>  IB = M - (M-1)*MB.  For each of the B blocks, a upper triangular block
 | 
						|
*>  reflector factor is computed: T1, T2, ..., TB.  The MB-by-MB (and IB-by-IB
 | 
						|
*>  for the last block) T's are stored in the MB-by-N matrix T as
 | 
						|
*>
 | 
						|
*>               T = [T1 T2 ... TB].
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DTPLQT( M, N, L, MB, A, LDA, B, LDB, T, LDT, WORK,
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.1) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     June 2017
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER INFO, LDA, LDB, LDT, N, M, L, MB
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
* =====================================================================
 | 
						|
*
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER    I, IB, LB, NB, IINFO
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL   DTPLQT2, DTPRFB, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      IF( M.LT.0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( L.LT.0 .OR. (L.GT.MIN(M,N) .AND. MIN(M,N).GE.0)) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( MB.LT.1 .OR. (MB.GT.M .AND. M.GT.0)) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
 | 
						|
         INFO = -8
 | 
						|
      ELSE IF( LDT.LT.MB ) THEN
 | 
						|
         INFO = -10
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DTPLQT', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      IF( M.EQ.0 .OR. N.EQ.0 ) RETURN
 | 
						|
*
 | 
						|
      DO I = 1, M, MB
 | 
						|
*
 | 
						|
*     Compute the QR factorization of the current block
 | 
						|
*
 | 
						|
         IB = MIN( M-I+1, MB )
 | 
						|
         NB = MIN( N-L+I+IB-1, N )
 | 
						|
         IF( I.GE.L ) THEN
 | 
						|
            LB = 0
 | 
						|
         ELSE
 | 
						|
            LB = NB-N+L-I+1
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         CALL DTPLQT2( IB, NB, LB, A(I,I), LDA, B( I, 1 ), LDB,
 | 
						|
     $                 T(1, I ), LDT, IINFO )
 | 
						|
*
 | 
						|
*     Update by applying H**T to B(I+IB:M,:) from the right
 | 
						|
*
 | 
						|
         IF( I+IB.LE.M ) THEN
 | 
						|
            CALL DTPRFB( 'R', 'N', 'F', 'R', M-I-IB+1, NB, IB, LB,
 | 
						|
     $                    B( I, 1 ), LDB, T( 1, I ), LDT,
 | 
						|
     $                    A( I+IB, I ), LDA, B( I+IB, 1 ), LDB,
 | 
						|
     $                    WORK, M-I-IB+1)
 | 
						|
         END IF
 | 
						|
      END DO
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DTPLQT
 | 
						|
*
 | 
						|
      END
 |