312 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			312 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGBCON
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download DGBCON + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbcon.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbcon.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbcon.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
 | 
						|
*                          WORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          NORM
 | 
						|
*       INTEGER            INFO, KL, KU, LDAB, N
 | 
						|
*       DOUBLE PRECISION   ANORM, RCOND
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       INTEGER            IPIV( * ), IWORK( * )
 | 
						|
*       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGBCON estimates the reciprocal of the condition number of a real
 | 
						|
*> general band matrix A, in either the 1-norm or the infinity-norm,
 | 
						|
*> using the LU factorization computed by DGBTRF.
 | 
						|
*>
 | 
						|
*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
 | 
						|
*> condition number is computed as
 | 
						|
*>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] NORM
 | 
						|
*> \verbatim
 | 
						|
*>          NORM is CHARACTER*1
 | 
						|
*>          Specifies whether the 1-norm condition number or the
 | 
						|
*>          infinity-norm condition number is required:
 | 
						|
*>          = '1' or 'O':  1-norm;
 | 
						|
*>          = 'I':         Infinity-norm.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The order of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KL
 | 
						|
*> \verbatim
 | 
						|
*>          KL is INTEGER
 | 
						|
*>          The number of subdiagonals within the band of A.  KL >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] KU
 | 
						|
*> \verbatim
 | 
						|
*>          KU is INTEGER
 | 
						|
*>          The number of superdiagonals within the band of A.  KU >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] AB
 | 
						|
*> \verbatim
 | 
						|
*>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
 | 
						|
*>          Details of the LU factorization of the band matrix A, as
 | 
						|
*>          computed by DGBTRF.  U is stored as an upper triangular band
 | 
						|
*>          matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
 | 
						|
*>          the multipliers used during the factorization are stored in
 | 
						|
*>          rows KL+KU+2 to 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAB
 | 
						|
*> \verbatim
 | 
						|
*>          LDAB is INTEGER
 | 
						|
*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] IPIV
 | 
						|
*> \verbatim
 | 
						|
*>          IPIV is INTEGER array, dimension (N)
 | 
						|
*>          The pivot indices; for 1 <= i <= N, row i of the matrix was
 | 
						|
*>          interchanged with row IPIV(i).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] ANORM
 | 
						|
*> \verbatim
 | 
						|
*>          ANORM is DOUBLE PRECISION
 | 
						|
*>          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 | 
						|
*>          If NORM = 'I', the infinity-norm of the original matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          The reciprocal of the condition number of the matrix A,
 | 
						|
*>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is DOUBLE PRECISION array, dimension (3*N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] IWORK
 | 
						|
*> \verbatim
 | 
						|
*>          IWORK is INTEGER array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>          = 0:  successful exit
 | 
						|
*>          < 0: if INFO = -i, the i-th argument had an illegal value
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup doubleGBcomputational
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
 | 
						|
     $                   WORK, IWORK, INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          NORM
 | 
						|
      INTEGER            INFO, KL, KU, LDAB, N
 | 
						|
      DOUBLE PRECISION   ANORM, RCOND
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      INTEGER            IPIV( * ), IWORK( * )
 | 
						|
      DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      LOGICAL            LNOTI, ONENRM
 | 
						|
      CHARACTER          NORMIN
 | 
						|
      INTEGER            IX, J, JP, KASE, KASE1, KD, LM
 | 
						|
      DOUBLE PRECISION   AINVNM, SCALE, SMLNUM, T
 | 
						|
*     ..
 | 
						|
*     .. Local Arrays ..
 | 
						|
      INTEGER            ISAVE( 3 )
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DDOT, DLAMCH
 | 
						|
      EXTERNAL           LSAME, IDAMAX, DDOT, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           DAXPY, DLACN2, DLATBS, DRSCL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MIN
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test the input parameters.
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
 | 
						|
      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( N.LT.0 ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( KL.LT.0 ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( KU.LT.0 ) THEN
 | 
						|
         INFO = -4
 | 
						|
      ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
 | 
						|
         INFO = -6
 | 
						|
      ELSE IF( ANORM.LT.ZERO ) THEN
 | 
						|
         INFO = -8
 | 
						|
      END IF
 | 
						|
      IF( INFO.NE.0 ) THEN
 | 
						|
         CALL XERBLA( 'DGBCON', -INFO )
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Quick return if possible
 | 
						|
*
 | 
						|
      RCOND = ZERO
 | 
						|
      IF( N.EQ.0 ) THEN
 | 
						|
         RCOND = ONE
 | 
						|
         RETURN
 | 
						|
      ELSE IF( ANORM.EQ.ZERO ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      SMLNUM = DLAMCH( 'Safe minimum' )
 | 
						|
*
 | 
						|
*     Estimate the norm of inv(A).
 | 
						|
*
 | 
						|
      AINVNM = ZERO
 | 
						|
      NORMIN = 'N'
 | 
						|
      IF( ONENRM ) THEN
 | 
						|
         KASE1 = 1
 | 
						|
      ELSE
 | 
						|
         KASE1 = 2
 | 
						|
      END IF
 | 
						|
      KD = KL + KU + 1
 | 
						|
      LNOTI = KL.GT.0
 | 
						|
      KASE = 0
 | 
						|
   10 CONTINUE
 | 
						|
      CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
 | 
						|
      IF( KASE.NE.0 ) THEN
 | 
						|
         IF( KASE.EQ.KASE1 ) THEN
 | 
						|
*
 | 
						|
*           Multiply by inv(L).
 | 
						|
*
 | 
						|
            IF( LNOTI ) THEN
 | 
						|
               DO 20 J = 1, N - 1
 | 
						|
                  LM = MIN( KL, N-J )
 | 
						|
                  JP = IPIV( J )
 | 
						|
                  T = WORK( JP )
 | 
						|
                  IF( JP.NE.J ) THEN
 | 
						|
                     WORK( JP ) = WORK( J )
 | 
						|
                     WORK( J ) = T
 | 
						|
                  END IF
 | 
						|
                  CALL DAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
 | 
						|
   20          CONTINUE
 | 
						|
            END IF
 | 
						|
*
 | 
						|
*           Multiply by inv(U).
 | 
						|
*
 | 
						|
            CALL DLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
 | 
						|
     $                   KL+KU, AB, LDAB, WORK, SCALE, WORK( 2*N+1 ),
 | 
						|
     $                   INFO )
 | 
						|
         ELSE
 | 
						|
*
 | 
						|
*           Multiply by inv(U**T).
 | 
						|
*
 | 
						|
            CALL DLATBS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N,
 | 
						|
     $                   KL+KU, AB, LDAB, WORK, SCALE, WORK( 2*N+1 ),
 | 
						|
     $                   INFO )
 | 
						|
*
 | 
						|
*           Multiply by inv(L**T).
 | 
						|
*
 | 
						|
            IF( LNOTI ) THEN
 | 
						|
               DO 30 J = N - 1, 1, -1
 | 
						|
                  LM = MIN( KL, N-J )
 | 
						|
                  WORK( J ) = WORK( J ) - DDOT( LM, AB( KD+1, J ), 1,
 | 
						|
     $                        WORK( J+1 ), 1 )
 | 
						|
                  JP = IPIV( J )
 | 
						|
                  IF( JP.NE.J ) THEN
 | 
						|
                     T = WORK( JP )
 | 
						|
                     WORK( JP ) = WORK( J )
 | 
						|
                     WORK( J ) = T
 | 
						|
                  END IF
 | 
						|
   30          CONTINUE
 | 
						|
            END IF
 | 
						|
         END IF
 | 
						|
*
 | 
						|
*        Divide X by 1/SCALE if doing so will not cause overflow.
 | 
						|
*
 | 
						|
         NORMIN = 'Y'
 | 
						|
         IF( SCALE.NE.ONE ) THEN
 | 
						|
            IX = IDAMAX( N, WORK, 1 )
 | 
						|
            IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
 | 
						|
     $         GO TO 40
 | 
						|
            CALL DRSCL( N, SCALE, WORK, 1 )
 | 
						|
         END IF
 | 
						|
         GO TO 10
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the estimate of the reciprocal condition number.
 | 
						|
*
 | 
						|
      IF( AINVNM.NE.ZERO )
 | 
						|
     $   RCOND = ( ONE / AINVNM ) / ANORM
 | 
						|
*
 | 
						|
   40 CONTINUE
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGBCON
 | 
						|
*
 | 
						|
      END
 |