186 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			186 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b CLACRM multiplies a complex matrix by a square real matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download CLACRM + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clacrm.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clacrm.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clacrm.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE CLACRM( M, N, A, LDA, B, LDB, C, LDC, RWORK )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDA, LDB, LDC, M, N
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               B( LDB, * ), RWORK( * )
 | 
						|
*       COMPLEX            A( LDA, * ), C( LDC, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> CLACRM performs a very simple matrix-matrix multiplication:
 | 
						|
*>          C := A * B,
 | 
						|
*> where A is M by N and complex; B is N by N and real;
 | 
						|
*> C is M by N and complex.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix A and of the matrix C.
 | 
						|
*>          M >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns and rows of the matrix B and
 | 
						|
*>          the number of columns of the matrix C.
 | 
						|
*>          N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is COMPLEX array, dimension (LDA, N)
 | 
						|
*>          On entry, A contains the M by N matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A. LDA >=max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] B
 | 
						|
*> \verbatim
 | 
						|
*>          B is REAL array, dimension (LDB, N)
 | 
						|
*>          On entry, B contains the N by N matrix B.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDB
 | 
						|
*> \verbatim
 | 
						|
*>          LDB is INTEGER
 | 
						|
*>          The leading dimension of the array B. LDB >=max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX array, dimension (LDC, N)
 | 
						|
*>          On exit, C contains the M by N matrix C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >=max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (2*M*N)
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \date December 2016
 | 
						|
*
 | 
						|
*> \ingroup complexOTHERauxiliary
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE CLACRM( M, N, A, LDA, B, LDB, C, LDC, RWORK )
 | 
						|
*
 | 
						|
*  -- LAPACK auxiliary routine (version 3.7.0) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     December 2016
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDA, LDB, LDC, M, N
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               B( LDB, * ), RWORK( * )
 | 
						|
      COMPLEX            A( LDA, * ), C( LDC, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, L
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          AIMAG, CMPLX, REAL
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SGEMM
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick return if possible.
 | 
						|
*
 | 
						|
      IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
 | 
						|
     $   RETURN
 | 
						|
*
 | 
						|
      DO 20 J = 1, N
 | 
						|
         DO 10 I = 1, M
 | 
						|
            RWORK( ( J-1 )*M+I ) = REAL( A( I, J ) )
 | 
						|
   10    CONTINUE
 | 
						|
   20 CONTINUE
 | 
						|
*
 | 
						|
      L = M*N + 1
 | 
						|
      CALL SGEMM( 'N', 'N', M, N, N, ONE, RWORK, M, B, LDB, ZERO,
 | 
						|
     $            RWORK( L ), M )
 | 
						|
      DO 40 J = 1, N
 | 
						|
         DO 30 I = 1, M
 | 
						|
            C( I, J ) = RWORK( L+( J-1 )*M+I-1 )
 | 
						|
   30    CONTINUE
 | 
						|
   40 CONTINUE
 | 
						|
*
 | 
						|
      DO 60 J = 1, N
 | 
						|
         DO 50 I = 1, M
 | 
						|
            RWORK( ( J-1 )*M+I ) = AIMAG( A( I, J ) )
 | 
						|
   50    CONTINUE
 | 
						|
   60 CONTINUE
 | 
						|
      CALL SGEMM( 'N', 'N', M, N, N, ONE, RWORK, M, B, LDB, ZERO,
 | 
						|
     $            RWORK( L ), M )
 | 
						|
      DO 80 J = 1, N
 | 
						|
         DO 70 I = 1, M
 | 
						|
            C( I, J ) = CMPLX( REAL( C( I, J ) ),
 | 
						|
     $                  RWORK( L+( J-1 )*M+I-1 ) )
 | 
						|
   70    CONTINUE
 | 
						|
   80 CONTINUE
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of CLACRM
 | 
						|
*
 | 
						|
      END
 |